Wave turbulence and fluid turbulence belong to the same class of turbulent states made of a large number of nonlinearly coupled degrees of freedom driven far from equilibrium. The Weak Turbulence Theory is a statistical theory of...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2011-24642
INESTABILIDADES Y TURBULENCIA: FORMACION DE ESTRUCTURAS EN F...
128K€
Cerrado
MHDTURB
Nonuniversal statistics in MHD turbulence
194K€
Cerrado
FIS2013-40880-P
COMPLEJIDAD Y GENESIS DE LA TURBULENCIA EN FLUJOS FUNDAMENTA...
61K€
Cerrado
UniCHydro
Universal properties of Chaos and Hydrodynamics
269K€
Cerrado
TTT
Nontrivial Vortex States and their Connection to the Transit...
163K€
Cerrado
PipeEdge
Analysis of coherent states at the laminar turbulence bounda...
162K€
Cerrado
Información proyecto WATU
Duración del proyecto: 65 meses
Fecha Inicio: 2015-07-20
Fecha Fin: 2020-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Wave turbulence and fluid turbulence belong to the same class of turbulent states made of a large number of nonlinearly coupled degrees of freedom driven far from equilibrium. The Weak Turbulence Theory is a statistical theory of low amplitude turbulent waves. The predicted phenomenology (energy cascade) is very similar to that of fluid turbulence, which badly lacks such a statistical theory. Weak Turbulence is thus a promising mathematical framework for turbulence in general. It is observed in many systems such as planetary atmospheres, astrophysical plasmas, tokomak fusion plasmas, superfluid turbulence or Bose-Einstein condensates for example. The theory is much less advanced in the strong wave turbulence case for which a richer phenomenology appears due to the generation of coherent structures. Furthermore, to a large extent the theory lacks experimental validation.
My project aims at studying several physical systems (vibrating elastic plate, 1D and 2D water surface waves, 3D internal waves in a stratified fluid) specifically chosen to highlight various features of wave turbulence both in the weak and strong regimes. Under strong forcing, coherent structures will appear such as developable cones (elastic plates), solitons and sharp water wave ridges (water surface waves) or even fluid turbulence for overturning 3D internal waves. I will specifically use two unique large-scale facilities available in LEGI (Grenoble, France): the 30 m 1D wave flume for surface water waves and the 13m-diameter Coriolis turntable for water surface waves and internal waves. I will setup advanced space-time resolved profilometry and velocimetry techniques adapted to the dimensionality and size of each one of these systems. Advanced statistical tools on massive datasets will provide a profound insight into the coupling between waves and structures in the various regimes of wave turbulence.