Visualizing microbial societies: exposing the principles of single-cell phenotyp...
Visualizing microbial societies: exposing the principles of single-cell phenotypic heterogeneity via massively multiplexed imaging
Bacteria are social organisms that interact and coordinate their behaviors to shape our world. Whereas their clonal populations are genetically identical, they contain phenotypically distinct members. This diversity provides resil...
Bacteria are social organisms that interact and coordinate their behaviors to shape our world. Whereas their clonal populations are genetically identical, they contain phenotypically distinct members. This diversity provides resilience to unpredictable environmental changes, such as antibiotic exposure or nutrient depletion. It also facilitates cooperative interactions between different sub-population via specialization in costly activities such as virulence factor production, forming an extended basis for sociality. Yet, the phenotypic landscape in any given species remains largely unexplored due to the technical challenges of profiling individual bacteria, particularly in spatially structured biofilms and host tissues. Recent breakthroughs in microbial single-cell transcriptomics, developed by the PI of the current proposal (Dar et al., Science 2021), now provide a unique opportunity to illuminate this hidden complexity.
This proposal seeks a systematic and experimentally derived view of phenotypic variation. We will comparatively study pathogenic and non-pathogenic Pseudomonas species in three settings, each illuminating distinct core principles of cell-cell variability. In Objective 1, we will focus on free-living populations, building on the massive multiplexing capacity of our method to comprehensively map phenotypic cell states, outline their interplay with physiological and environmental factors, and study their evolution. We will characterize the spatiotemporal dynamics of cell states directly within 3D biofilms in Objective 2, and contextualize our results in vivo during infection in Objective 3, simultaneously measuring host-and-microbe spatial expression.
Comprehensively studying phenotypic heterogeneity is a critical next step for understanding how microbes survive in complex environments, socially interact, and subvert their hosts during infection. If successfully executed, this proposal will shed light on the plasticity that defines microbial liver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.