Virtual planets to unravel how mantle convection shapes geosphere, climate and l...
Virtual planets to unravel how mantle convection shapes geosphere, climate and life co-evolution
The Earth's geosphere, hydrosphere, atmosphere, and biosphere have co-evolved together as a single planetary system for billions of years, resulting in a complex web of systemic interactions that have shaped the geological record...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2014-59363-P
ANALISIS DE LA TECTONICA Y EVOLUCION INTERNA DE MARTE
38K€
Cerrado
Mars through time
Modeling the past climates of planet Mars to understand its...
2M€
Cerrado
PALEOCORE
Core dynamics on millennial timescales
2M€
Cerrado
EPIC
Untangling Ediacaran Paleomagnetism to Contextualize Immense...
2M€
Cerrado
SOFT-PLANET
Convection and transfers in a textured partially-molten plan...
3M€
Cerrado
CTM2014-60451-C2-2-P
EVOLUCION GEODINAMICA DE LOS PASOS OCEANICOS DE TASMANIA Y D...
169K€
Cerrado
Información proyecto PANDORA
Duración del proyecto: 63 meses
Fecha Inicio: 2024-05-03
Fecha Fin: 2029-08-31
Líder del proyecto
UNIVERSITE COTE DAZUR
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
The Earth's geosphere, hydrosphere, atmosphere, and biosphere have co-evolved together as a single planetary system for billions of years, resulting in a complex web of systemic interactions that have shaped the geological record and biodiversity. However, the complexity of these interactions and the incomplete geological record make it impossible to replay the tape and fully explore the profound mechanisms at play. Here I propose to uncover how mantle convection shapes with the evolution of both the surface environment and photosynthetic autotrophs. To accomplish this ambitious objective, I will construct advanced 3D spherical virtual terrestrial planetary systems operating at geological time scales. I will explore the responses of global coupled carbon-climate-surface process-eco-evolution models to cutting-edge 3D spherical geodynamic scenarios over 1 Gy time-scale. The utilization of these innovative models will resolve a series of fundamental questions such as: what planetary properties drive fast adaptive radiation? What mantle/lithosphere properties generate stable/variable environments over geological time? Throughout this groundbreaking project, I will leverage the power of in silico simulations to create self-consistent virtual terrestrial planetary interiors capable of generating conditions conducive to the evolution of geological and biological diversity. To decipher the intricate relationships between model parameters and their effects on geological, climatic, and biological changes, I will employ state-of-the-art machine learning classification methods. With Pandora, I am poised to make significant strides in understanding the systemic dynamics behind the profound planetary changes that have shaped Earth and potentially other planetary bodies.