Innovating Works

VIRUSong

Financiado
Vibrations of viral particles scatter light
Viruses are nanoparticles with well-defined size, shape and elasticity in which acoustic waves are confined. This leads to the appearance of new vibration modes that correspond to the vibration of the virus particle as a whole obj... Viruses are nanoparticles with well-defined size, shape and elasticity in which acoustic waves are confined. This leads to the appearance of new vibration modes that correspond to the vibration of the virus particle as a whole object. The VIRUSong project aims at implementing and realizing a simple and radically new way to identify viral particles on the basis of these vibrations. Inelastic light scattering spectroscopy (Raman and Brillouin) is usually a tool of choice to measure these vibrations, but for viruses, the effective scattering cross section is small. To overcome this drawback, the VIRUSong project will mainly focus on a few viruses of different size and structure and two parallel strategies will be explored. (a) the coupling of viruses with nanoparticles of hard materials which are very simple nano resonators (NPRs). The project VIRUSong project aims at using them as antennas to collect and amplify the song of the virus particles (i.e. the vibrations of the virions). (b) the use of Stimulated low-frequency inelastic spectroscopy that will allow the label-free detection of any type of virus. To achieve these objectives, the project will analyze each selected familly of viruses to determine their composition, size, shape and mechanical properties. Finally, all this information will be correlated using artificial intelligence to identify a given virus based on its vibrational spectra. By pushing the current limits of stimulated inelastic light scattering spectroscopy, designing nanoparticle resonators (NPRs) and implementing efficient artificial intelligence models, this project aims to develop the proof of concept of a new technology capable of identifying viral particles by light in a few minutes, while achieving high selectivity (specific vibrational signature) and high sensitivity (down to the single viral particle). ver más
31/08/2027
5M€
Duración del proyecto: 47 meses Fecha Inicio: 2023-09-01
Fecha Fin: 2027-08-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-09-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 5M€
Líder del proyecto
UNIVERSITE LYON 1 CLAUDE BERNARD No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5