Optical systems operating at the quantum regime have recently enabled the detection of gravitational waves; new forms of ultra-secure communications; and high-fidelity manipulation of quantum states for quantum computing. Maintai...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QUIPS
Quantum Ultrafast Integrated Photonics in Silicon
309K€
Cerrado
MULTIQUANT
All Solid State Multi Photon Generation and Quantum Manipula...
231K€
Cerrado
ISSIS
Integrated Single photon Sources in Silicon
270K€
Cerrado
S2QUIP
Scalable Two Dimensional Quantum Integrated Photonics
3M€
Cerrado
Duración del proyecto: 42 meses
Fecha Inicio: 2017-03-07
Fecha Fin: 2020-09-30
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
260K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Optical systems operating at the quantum regime have recently enabled the detection of gravitational waves; new forms of ultra-secure communications; and high-fidelity manipulation of quantum states for quantum computing. Maintaining this progress requires breakthroughs in quantum photonic architectures to process many optical modes with exceptional speed and precision. Fortunately, progress in optical interconnects has culminated in the development of silicon photonic integrated circuits, enabling photonic devices to be combined virtually losslessly at orders of magnitude higher component density than possible with traditional methods. Here, we propose to leverage these advances to meet the stringent requirements of optical quantum information processing bringing together state-of-the-art single photon source technologies and large-scale silicon photonic circuits: (1) Leveraging state-of-the-art silicon photonics fabrication processes to build a large-scale 10-photon quantum photonic processor; fully integrated with on-chip photon sources, pump engineering and reconfigurable circuitry. (2) Interfacing solid-state quantum emitters with silicon photonic circuitry, enabling deterministic generation and large-scale manipulation of single photon states. These very-large-scale quantum photonic processors (VLS-QPP) will provide several orders of magnitude speedups compared with current technologies, demonstrate practical quantum algorithms for quantum chemistry and machine learning, and provide a clear route towards scalable photonic quantum technologies. To enable these advances this fellowship proposes a clear training plan, at two world-leading institutions, towards developing the necessary diverse skill set to propel the field forward in new directions.