We propose to extend the time scale accessible to atomistic-based simulation methods from the current range to millisecond and beyond without special-purpose machines. We shall do this by combining and extending two recent deve...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SimViRNA
Multiscale Simulations of HIV capsid assembly and RNA
265K€
Cerrado
CTQ2009-09370
APLICACIONES DE LA SEMEJANZA MOLECULAR CUANTICA Y DE MODELOS...
11K€
Cerrado
PTQ2021-011776
PharmScreen+: Cribado virtual de librerías moleculares gigan...
115K€
Cerrado
IJC2019-040468-I
Multiscale Simulations of the Enzyme-mediated Nucleic Acids...
93K€
Cerrado
VARIAMOLS
VAriable ResolutIon Algorithms for macroMOLecular Simulation
1M€
Cerrado
IJCI-2016-27503
Computational studies of enzymatic reactions
64K€
Cerrado
Información proyecto VARMET
Duración del proyecto: 65 meses
Fecha Inicio: 2015-07-29
Fecha Fin: 2020-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We propose to extend the time scale accessible to atomistic-based simulation methods from the current range to millisecond and beyond without special-purpose machines. We shall do this by combining and extending two recent developments: a recent reformulation of the enhanced sampling problem into a powerful variational principle that opens a wealth of possibilities and provides a novel and fruitful standpoint for new developments; and a procedure for extracting rates from enhanced runs. We shall apply the methods thus developed to two major problems of great practical interest. One is the lifetime of a ligand-protein bound state. This quantity is not easily accessible experimentally and yet it is crucial in drug design to determine the potency of a drug. We plan to develop a viable and widely applicable way to compute it. The other is a study of crystallization from solution, for which we wish to determine the nucleation mechanism and nucleation rates and understand and control crystal growth. These are all issues of great relevance in engineering, pharmacology and nanotechnology. Besides being relevant on their own merits, these two applications present different challenges to the enhanced methods. We also believe that new methods should not be developed in an abstract way but in close interaction with real-life applications.