Using Network Theory to Predict Depression Onset and Build a Personalized Early...
Using Network Theory to Predict Depression Onset and Build a Personalized Early Warning System
Depression is common, debilitating, and often chronic. It severely compromises the capacity for independent living, and is the strongest predictor of suicide. Young people are disproportionately affected, and many will spend over...
Depression is common, debilitating, and often chronic. It severely compromises the capacity for independent living, and is the strongest predictor of suicide. Young people are disproportionately affected, and many will spend over 20% of their lives in a state of depression. Further, only 50% of patients improve under initial treatment. Experts agree that prevention is the most effective way to change depression’s global disease burden. The biggest barrier to successful personalized prevention is to identify those at risk for depression in the near future. My proposal aims to solve the challenge who should receive prevention, and when, by developing the personalized early warning system WARN-D. To implement personalized detection, I will follow 2,000 individuals over 2 years, and integrate emerging theoretical, measurement, and modelling approaches from different scientific fields so far unconnected. Regarding theory, I conceptualize depression as a complex dynamical system in which causal relations and vicious cycles between problems can move the system from a healthy to a clinical state, consistent with the Network Approach to Psychopathology that I co-developed. Regarding measurement, I will follow participants in their daily lives, and collect temporal dynamics of bio-psycho-social variables like mood, anxiety, stress, impairment, sleep, and activity via smart-phone based ecological momentary assessment (EMA) and smart-watch based digital phenotype data. I will use dynamical network models to study the relations among problems, and use parameters of these models, combined with baseline, EMA, and digital phenotype data, to construct the prediction model WARN-D via state-of-the-art machine learning models. The interdisciplinary project combines numerous modern tools to develop a tailored personalized early warning system that forecasts depression reliably before it occurs, promising to radically transform the science of depression detection.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.