Using hidden genealogical structure to study the architecture of human disease
Large-scale genome-wide association studies (GWAS) have yielded thousands of genetic as-sociations to heritable traits, but for most common diseases, these signals collectively explain only a small fraction of phenotypic variation...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HaplotypeStructure
Understanding the evolution of continuous genomes
2M€
Cerrado
PID2019-108096RB-C22
APROXIMACIONES BASADAS EN REDES PARA ASISTIR AL DIAGNOSTICO...
121K€
Cerrado
EdGe
The molecular genetic architecture of educational attainment...
2M€
Cerrado
BFU2015-68759-P
DESARROLLO DE NUEVAS HERRAMIENTAS ESTADISTICAS PARA MEJORAR...
142K€
Cerrado
CGL2011-27866
VARIABILIDAD POBLACIONAL DE REGIONES GENOMICAS IDENTIFICADAS...
97K€
Cerrado
MTM2011-26515
MODELOS ESTADISTICOS, ALGORITMOS Y HERRAMIENTAS BIOINFORMATI...
28K€
Cerrado
Información proyecto ARGPHENO
Duración del proyecto: 74 meses
Fecha Inicio: 2019-10-30
Fecha Fin: 2025-12-31
Descripción del proyecto
Large-scale genome-wide association studies (GWAS) have yielded thousands of genetic as-sociations to heritable traits, but for most common diseases, these signals collectively explain only a small fraction of phenotypic variation. The phenotypic impact of recent, rare genetic variants, in particular, is poorly understood, but currently available data sets and analytical tools cannot be used to effectively study this class of variation. To address this problem, we propose to develop new computational methodology that will enable studying the phenotypic role of recent, rare genetic variation. This will improve our understanding of the architecture of heritable complex traits, inform the design of future studies, and increase our ability to detect novel associations.
This project will address three specific aims. The first aim is to devise new methods to accurately reconstruct the complex network of genealogical relationships of individuals using high/low-coverage sequencing or microarray data. The second is to leverage these genealogical structures to infer the presence of unobserved genetic variation, with the goal of analyzing variance components of narrow sense heritability attributable to rare variants and studying the evolutionary history of heritable traits. Finally, in the third aim, we will develop new approaches to detect association to both rare and common variants, increasing the statistical power of GWAS methodology.