Using CRISPR genome screens and dual transcriptome analyses to dissect host path...
Using CRISPR genome screens and dual transcriptome analyses to dissect host pathogen interactions in tuberculosis
With more than 10 million cases annually, tuberculosis (TB) remains a global health problem. TB epidemic is exacerbated by the spread of multidrug-resistant TB. Host-directed therapies (HDTs) can improve immune mechanisms by augme...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TB-PATH
Novel Approaches to Determine Molecular Mechanisms of Pathog...
2M€
Cerrado
TB-IMMUNOGEN
Understanding genetic control of global gene expression in h...
2M€
Cerrado
TB-EURO-GEN
Genetic Analysis of the host pathogen interaction in tubercu...
4M€
Cerrado
HOMITB
Host and microbial molecular dissection of pathogenesis and...
4M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
With more than 10 million cases annually, tuberculosis (TB) remains a global health problem. TB epidemic is exacerbated by the spread of multidrug-resistant TB. Host-directed therapies (HDTs) can improve immune mechanisms by augmenting the ability of host cells to kill M. tuberculosis (Mtb) or by modulating the immune response to prevent excessive inflammation, cell death and tissue damage. Progress with HDT development has been slowed down by the limited understanding of host-pathogen interactions during Mtb infection. Screens of the whole human genome can identify novel genes involved in the immune responses to Mtb infection and susceptibility to TB. Previously, we successfully used genome-wide association studies to identify human genes associated with susceptibility to TB. Here, we will for the first time use the groundbreaking CRISPR technology to screen the human genome in macrophages infected with Mtb and discover genes that are critically involved in host-pathogen interactions. Then, we will comprehensively characterise pathways that mediate impacts of these genes on both the human macrophage and the intracellular Mtb bacilli using dual transcriptome analyses and high-throughput microscopy assays. This novel approach will dissect crucial mechanisms of host-pathogen interaction during Mtb infection and will point to new targets for HDTs of TB.