Using causal discovery algorithms to boost subseasonal to seasonal forecast skil...
Using causal discovery algorithms to boost subseasonal to seasonal forecast skill of Mediterranean rainfall
The Mediterranean region (MED) is a hotspot of anthropogenic climate change and impacts are probably already felt today; recent heatwaves and persistent droughts have led to crop failures, wild fires and water shortages, causing l...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto CausalBoost
Duración del proyecto: 34 meses
Fecha Inicio: 2019-04-12
Fecha Fin: 2022-02-28
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The Mediterranean region (MED) is a hotspot of anthropogenic climate change and impacts are probably already felt today; recent heatwaves and persistent droughts have led to crop failures, wild fires and water shortages, causing large economic losses. Climate models robustly project further warming and drying of the region, putting it at risk of desertification. The particular vulnerability of this water-limited region to climatic changes has created an urgent need for reliable forecasts of rainfall on subseasonal to seasonal (S2S) timescales, i.e. 2 weeks up to a season ahead. This S2S time-range is particularly crucial, as the prediction lead time is long enough to implement adaptation measures, and short enough to be of immediate relevance for decision makers. However, predictions on lead-times beyond approximately 10 days fall into the so-called weather-climate prediction gap, with operational forecast models only providing marginal skill. The reasons for this are a range of fundamental challenges, including a limited causal understanding of the underlying sources of predictability.
The proposed research effort aims to improve S2S forecasts of MED rainfall by taking an innovative, interdisciplinary approach that combines novel causal discovery algorithms from complex system science with operational forecast models. This will overcome current limitations of conventional statistical methods to identify relevant sources of predictability and to evaluate modelled teleconnection processes. The outcomes of this project will (i) identify key S2S drivers of MED rainfall, (ii) systematically evaluate them in forecast models, (iii) derive process-based bias corrections to (iv) boost forecast skill. My strong background in both causal inference techniques and atmospheric dynamics puts me in a unique position to lead this innovative effort and to achieve real progress in reducing the weather-climate prediction gap for the MED region.