Using CARDIac simulations to run in-silicO clinical TRIALS
Clinical trials are a key tool for advancing medical knowledge, but they consist of a long and costly process entailing the recruitment of a representative cohort of participants to properly account for the population statistical...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DPI2016-81873-REDT
RED ESPAÑOLA DE INVESTIGACION EN MODELIZACION COMPUTACIONAL...
20K€
Cerrado
PID2019-104356RB-C44
MODELO VIRTUAL COMPUTACIONAL MECANO-ELECTRICO DE CORAZON HUM...
137K€
Cerrado
RYC-2017-22532
Superordenadores y modelización computacional en cardiología
309K€
Cerrado
PID2021-122518OB-I00
MODELOS COMPUTACIONALES PARA LA EVALUACION Y TRATAMIENTO DE...
151K€
Cerrado
DPI2009-06999
DESARROLLO DE TECNICAS DE ANALISIS DE SISTEMAS COMPLEJOS PAR...
54K€
Cerrado
DPI2016-75458-R
MULTI-SCALE PHYSIOLOGY-DRIVEN COMPUTATIONAL TOOLS TO ASSIST...
347K€
Cerrado
Información proyecto CARDIOTRIALS
Duración del proyecto: 65 meses
Fecha Inicio: 2022-04-22
Fecha Fin: 2027-09-30
Descripción del proyecto
Clinical trials are a key tool for advancing medical knowledge, but they consist of a long and costly process entailing the recruitment of a representative cohort of participants to properly account for the population statistical variability. Computational engineering is a promising approach to gain more insight into patients' cardiac pathologies and to test innovative medical devices before running conclusive in-vivo experiments on animals or medical trials on humans. This technological breakthrough, however, is limited by some technical and epistemic challenges: (i) the reliability of cardiovascular computational models depends on the accurate solution of the hemodynamics coupled with the deforming biologic tissues; (ii) the resulting multi-physics solver requires an immense computational power and long time-to-results; (iii) a great variability among individuals exists, thus calling for a statistical approach. For the first time I will accomplish and employ a computational platform for determining the outcome of pathologies or devices implantation by combining my GPU-accelerated multi-physics solver for the accurate solution of cardiac dynamics with an uncertainty quantification analysis to account for the individuals variability. The input parameters of the computational model will be treated as aleatory variables, whose probability distribution function will be obtained using three-dimensional datasets of cardiac configurations available to the PI's group and acquired in-vivo by the clinical members involved in the project. Simulation campaigns (rather than a single simulation) will be then run in order to sweep the uncertain input distributions and obtain the synthetic population response in the case of selected pathologies like myocardial infarction and the optimal stimulation pattern for cardiac resynchronization therapy. My approach removes the main barrier that keeps up from a systematic use of computational engineering to run in-silico clinical trials.