Innovating Works

USES2

Financiado
USES of novel Ultrasonic and Seismic Embedded Sensors for the non-destructive ev...
USES of novel Ultrasonic and Seismic Embedded Sensors for the non-destructive evaluation and structural health monitoring of critical infrastructure and human-built objects Detecting degradation that endangers the safety and impairs availability of infrastructure and components is currently the task of schedule-driven Non-Destructive Evaluation (NDE), this process is however costly and disruptive. Th... Detecting degradation that endangers the safety and impairs availability of infrastructure and components is currently the task of schedule-driven Non-Destructive Evaluation (NDE), this process is however costly and disruptive. The attractive alternative is to use condition based Structural Health Monitoring (SHM). Current, SHM typically uses sensors that provide local information only, which may be insufficient for detecting interior degradation or require very dense networks. Furthermore, the performance of both in-situ sensing systems and algorithms to process and interpret the sensor data is reduced when subject to Environmental and Operational Conditions (EOC). This limits their large-scale deployment. USES2 will develop and combine novel emerging sensing technologies (optical fibre and wireless pieozoelectric sensors), advanced processing (compressed sensing, artificial intelligence) and full-mechanical-waveform-based imaging to tackle these issues. Key to this cross-disciplinary work is a new generation of researchers with skills across sensing and signal processing. They will be trained with a unique combination of hands-on multidisciplinary research demonstrators, industrial placements, and courses /workshops on scientific and transferable skills. All of which is facilitated by the broad intersectoral composition of the consortium. USES2 will produce world class researchers expert in innovative sensing solutions, advanced mechanical wave processing and robust EOC compensation methods. Their skills will be embodied in a series of laboratory demonstrators and in situ industrially relevant experiments spanning three key sectors of European industry: energy [power plants (nuclear, wind), hydrogen storage, pipeline networks for fuel exploration and transport], mobility for citizens (aircraft, automotive industry) and construction (urban subsurface soil, infrastructures). ver más
28/02/2027
3M€
Duración del proyecto: 55 meses Fecha Inicio: 2022-07-06
Fecha Fin: 2027-02-28

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-07-06
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 3M€
Líder del proyecto
UNIVERSITE GUSTAVE EIFFEL No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5