Upscaling Mixing and Reactive Transport through Random Granular Media
"Modeling reactive transport of solutes in aquifers and other porous formations is a field with key applications for a wide range of problems in contaminant transport, soil remediation, subsurface CO2 sequestration and geothermal...
ver más
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
"Modeling reactive transport of solutes in aquifers and other porous formations is a field with key applications for a wide range of problems in contaminant transport, soil remediation, subsurface CO2 sequestration and geothermal energy. The wide range of scales at which fluid flows are governed by physical heterogeneities in porous media is a major obstacle in developing practical and accurate reactive transport models. The local mixing process governs (and may limit) the ability of reactants that are at close distance to establish direct contact and enable chemical reactions. However, continuum-scale reactive transport models typically neglect the role of mixing at the pore scale (and any other model-unresolved scales). This is partly because the precise link between a porous medium's micro-structure and its resulting mixing behavior has not been rigorously established yet; but also due to a lack of robust, generalized models and tools to account for local mixing and its upscaled effects. The goal of MixUp is to develop a first-of-its-kind upscaled transport modeling approach for mixing and reaction, founded on the underlying micro-scale physics, that can accurately account for local mixing in granular media, and that can be readily integrated within existing continuum-scale reactive models and codes. This will be attained by taking advantage of the recent ""A Closer Look"" simulation dataset, which contains the results of high-resolution Computational Fluid Dynamics simulations of pore-scale transport and mixing in granular media columns with an unprecedentedly large domain size, and also features different degrees of grain-size variability. A first implementation of the upscaled approach will be used to evaluate the importance of local mixing for reactive processes within mountain hillslopes."
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.