Unveiling the nature of superconductivity in moiré quantum matter
Graphene moiré materials constitute a new paradigm in condensed matter physics for the study of superconductivity and other collective electronic phases given their chemical and structural simplicity as well as large tunability as...
Graphene moiré materials constitute a new paradigm in condensed matter physics for the study of superconductivity and other collective electronic phases given their chemical and structural simplicity as well as large tunability as compared to other many-body systems. However, a comprehensive picture of the fundamental properties of superconductivity in graphene moiré materials is still missing due to the limited information attained so far at the microscopic level. Therefore, the need for local probe techniques that enable the exploration of superconductivity in moiré matter with outstanding energy and spatial resolution is pressing, and constitutes the main motivation of this project.
The ultimate objective of this project is to unveil the microscopic mechanisms driving superconductivity in graphene moiré materials. To this end, I propose the local characterization of the superconductivity in various twisted graphene systems with unprecedented resolution (few µeV) by means of STM/STS measurements at milikelvin temperatures. Here I aim to unveil (i) the symmetry of the order parameter(s) in unambiguous connection with the valley, orbital and spin degrees of freedom, (ii) the origin(s) of the attractive interactions governing Cooper pairing, and (iii) the nature of the neighboring correlated phases as well as their interplay with the superconducting state.
The intellectual merit of this project lies in the fact that will provide ground-breaking insights to long-standing questions in condensed matter physics, initially posed in complex unconventional superconductors, here instead tackled using simple, highly tunable moiré materials. Furthermore, this project has the potential to unveil forms of superconductivity never seen in nature before by using state-of-the-art microscopy technology that combines atomic-scale spatial resolution with the finest energy resolution.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.