Unveiling Gravitational Waves from Galactic Nuclei
To date, the mechanisms that trigger the formation and gravitational wave (GW) coalescence of compact-object (CO, black holes, neutron stars, white dwarfs) binaries are still unknown. Two main formation scenarios have been propose...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SwimmingGiants
Swimming Giants: Illuminating the super-massive-binary and g...
215K€
Cerrado
FunFiCO
Fundamental fields and compact objects theory and astrophys...
221K€
Cerrado
BlackHoleMergers
Formation of Black Hole Mergers in Dense Stellar Systems
219K€
Cerrado
ASTROGRAPHY
Gravity Fundamental Physics and Astrophysics The Missing L...
180K€
Cerrado
AGNBlackHoles
Evolution and merger of dynamical assembly black holes in AG...
231K€
Cerrado
InspiReM
Modeling binary neutron star from inspirals to remnants and...
2M€
Cerrado
Información proyecto GWnucleus
Duración del proyecto: 24 meses
Fecha Inicio: 2023-03-20
Fecha Fin: 2025-03-31
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
231K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
To date, the mechanisms that trigger the formation and gravitational wave (GW) coalescence of compact-object (CO, black holes, neutron stars, white dwarfs) binaries are still unknown. Two main formation scenarios have been proposed, primordial and dynamically-formed binaries, but both appear in tension with data. Galactic nuclei are a promising nursery for GW merger events, because of their high stellar density and the presence of a central massive black hole (MBH). Numerical simulations represent an ideal tool to model COs in galactic nuclei, but the current literature misses several key features which are needed to fully capture the complex physics involved. The GWnucleus project aims at filling this gap, by answering to the question: how do galactic nuclei shape the properties of gravitational waves (GW) sources? I will achieve this goal by developing an innovative hybrid Monte-Carlo/N-body model for simulating COs in galactic nuclei, at the Theoretical Astrophysics group of the Niels Bohr International Academy (NBIA), led by Prof. Martin Pessah. This novel framework will finally provide a complete understanding of GW progenitors' evolution in galactic nuclei, and establish a new theoretical model to interpret (present) and predict (forthcoming) GW observations.