Unveiling CO2 chemisorption mechanisms in solid adsorbents via surface enhanced...
Unveiling CO2 chemisorption mechanisms in solid adsorbents via surface enhanced ex in situ NMR
Reaching a historic high of 3Reaching a historic high of 32.5 gigatonnes in 2017, global carbon dioxide emissions from fossil fuels combustion continue to increase. CO2 removal technologies are part of the solution to tackle this...
ver más
31/05/2025
UAveiro
2M€
Presupuesto del proyecto: 2M€
Líder del proyecto
UNIVERSIDADE DE AVEIRO
No se ha especificado una descripción o un objeto social para esta compañía.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Últimas noticias
04-12-2024:
Programa de Ayudas P...
Se abre la línea de ayuda pública: Ayudas a proyectos empresariales para la transformación y desarrollo industrial en Aragón para el organismo:
04-12-2024:
REDES
En las últimas 48 horas el Organismo REDES ha otorgado 1 concesiones
04-12-2024:
CDTI
En las últimas 48 horas el Organismo CDTI ha otorgado 50 concesiones
Duración del proyecto: 65 meses
Fecha Inicio: 2019-12-19
Fecha Fin: 2025-05-31
Líder del proyecto
UNIVERSIDADE DE AVEIRO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Reaching a historic high of 3Reaching a historic high of 32.5 gigatonnes in 2017, global carbon dioxide emissions from fossil fuels combustion continue to increase. CO2 removal technologies are part of the solution to tackle this crucial environmental challenge. Because of their lower regeneration cost, amine-modified porous silicas (AMPS) are the most promising CO2-adsorbents for replacing the decades-old liquid amine scrubbing technology. AMPS are moisture-tolerant and selectively chemisorb CO2 from low-concentration mixtures, important features for operating under large-point CO2 emission source conditions.
The nature of CO2 species formed on AMPS surfaces determines the gas adsorption capacity/kinetics, selectivity, stability, and regenerability. However, a molecular-scale understanding of the CO2-AMPS adsorption process remains elusive, hindering our ability to design improved sorbents. NMR4CO2 aims to fill in this gap, engaging for the first time state-of-the-art surface-enhanced ex- and in-situ solid-state NMR (SSNMR) to study the chemistry of acidic gases (mainly CO2) adsorbed on AMPS, and the gas-solid interfaces, using simulated industrial gas mixtures. The project combines the expertise of spectroscopists, chemists, and engineers to tackle these challenges.
NMR4CO2 encompasses the design of novel SSNMR methods to study the kinetically- and thermodynamically-driven CO2-AMPS adsorption process, comprising in-situ flow NMR, dynamic nuclear polarization NMR, and isotopically-labeled gas mixtures. Important outcomes include: i) identification of competing CO2 chemisorption pathways; ii) effect on CO2 speciation of textural properties, amine type, inter-amine spacing, and amine-support cooperative effects; iii) real-time monitoring of acid gas speciation in multiple adsorption/desorption cycles; iv) identification of sorbent deactivation species; v) effect of pressure on CO2 speciation and vi) improvement of AMPS sorbent properties by synthetic modification.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.