Unravelling the chemical-physical principles of life through minimal synthetic c...
A grand challenge in bottom-up synthetic biology is to design and construct synthetic cells with life-like properties from a minimal number of parts. Achieving this goal would be a major engineering feat and enable an understandin...
A grand challenge in bottom-up synthetic biology is to design and construct synthetic cells with life-like properties from a minimal number of parts. Achieving this goal would be a major engineering feat and enable an understanding of how living systems work from the perspective of physical chemistry. Towards this, we have exploited bottom-up approaches and generated new insights into the impact of compartmentalization on the thermodynamics and kinetics of incorporated enzyme reactions. Our findings that dynamic coacervation can ignite dormant enzyme reactions provides the conceptual framework for our plan to build sustained out-of-equilibrium synthetic cellular systems. In MinSyn, the aims are to: 1) Define how molecular reaction networks are tuned by compartmentalization. 2) Build minimal synthetic compartments with self-sustained, out-of-equilibrium behaviour. 3) Utilize communication to coordinate reaction networks within populations of cells. Together, these objectives test our overarching hypothesis that sustained out-of-equilibrium systems can be established by interconnecting three features: molecular reaction networks, compartmentalization and communication. Key to this endeavour is our unique combination of chemical, biochemical and
biophysical tools for quantitative characterization of synthetic cellular systems. We are primed to address the major engineering challenge of building sustained out-of-equilibrium synthetic cellular systems and to tackle a central problem in biological sciences: How do biological cells and tissues sustain life from collections of non-living molecules? Our interdisciplinary approach will provide novel tools to the community and represents a unique multidisciplinary approach that will ultimately define the chemico-physico parameters of life. This can lead to unprecedented opportunities to rationally engineer molecular systems which may supersede biological capabilities.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.