Bacteria are fascinating organism, relatively and yet not fully understood. Fundamental research on bacteria led across the years to major technological breakthroughs like the discovery of genetic editing with CRISPR-Cas9. Besides...
Bacteria are fascinating organism, relatively and yet not fully understood. Fundamental research on bacteria led across the years to major technological breakthroughs like the discovery of genetic editing with CRISPR-Cas9. Besides, resistance of bacteria to antibiotics is becoming a growing public health concern, raising the need for a better understanding of the molecular mechanisms involved. We propose here to further our understanding of the molecular biology of bacteria by studying the dynamic of lipids in bacterial (B. Subtilis) membranes. In eukaryotic cells, it was found that lipid dynamics can reveal the micro- and nanoscale organisation of the plasma membrane, revealing a dynamic interplay between membrane components such as lipids, membrane proteins, and the actin cytoskeleton. Bacterial membranes were thought until recently to be much simpler, but accumulating evidence over the last ten years suggested that they too were highly heterogeneous and dynamic. However, very few studies so far focused on the question of lipid dynamics, in part because of the experimental complexity of such measurements. To address this, we will transfer new technologies based on fluorescence correlation spectroscopy (FCS), that were developed mainly for eukaryotic research, to the field of microbiology. With this unique methodology, we will answer a series of fundamental open questions: how do bacterial membranes organise at the nanoscale? Do they exhibit transient lipid-mediated interactions (called lipid rafts) as is thought to be the case in eukaryotes? Does MreB, bacterial equivalent of actin, also compartmentalises lipid diffusion? Answering these questions will help us build a holistic picture of the mechanisms associated with essential bacterial processes such as biofilm formation or antibiotic resistance, which will have far-reaching implications in both biology and medicine.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.