Unfolding the dynamic interplay of mechanical and molecular processes in brain f...
Mammals with large brains and higher cognitive functions have a richly folded cerebral cortex. Folding abnormalities are linked to various cognitive disabilities. Despite its relevance in clinical diagnostics, the causes and conse...
Mammals with large brains and higher cognitive functions have a richly folded cerebral cortex. Folding abnormalities are linked to various cognitive disabilities. Despite its relevance in clinical diagnostics, the causes and consequences of cortex folding remain poorly understood. While cortex folding was long assumed to result from a limited skull volume, it is a developmental process intrinsic to the cortex. We hypothesize that cortex folding emerges from a dynamic interplay between mechanical and molecular processes, and that far from being an epiphenomenon, it has major consequences for brain architecture and function. UNFOLD will test this hypothesis by integrating genomics, cell biology, mechanics of brain development and computational modeling. Our interdisciplinary team will apply in vitro, in vivo and in silico approaches to brain tissue of strategically selected animal models. First, we will map molecular, cellular, and mechanical events accompanying cortex folding. Next, we will investigate the effects of genetic perturbations of cell biological processes on tissue mechanics, and vice versa, to identify key mechanisms leading to cortex folding and elucidate their dynamic interactions. Then, we will test the universality of these mechanisms by inducing folds in species with a smooth brain. Finally, we will decipher the consequences of cortex folding on neural circuit function and animal behavior. Our project integrates current, opposing concepts of cortex folding by adopting an interdisciplinary and multiscale perspective. Unraveling the dynamic interactions between molecular, cellular, and mechanical events during development will provide unprecedented insights into the determinants of cortical anatomy and brain organization. Our work, bridging physical and life sciences, will lead to new insights into normal and pathological brain development, paving the way to a new research area of integrated neurobiology with potential applications in modern medicine.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.