Understanding the physical biology of adult blood stem cells
The discovery of functional heterogeneity in normal and malignant stem cells has shifted our understanding of how single cells are subverted to drive cancer. To design therapies for diseases of stem cell origin and to better prov...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PEPS
PErPetuating Stemness: From single-cell analysis to mechanis...
11M€
Cerrado
EXPAND
Defining the cellular dynamics leading to tissue expansion
2M€
Cerrado
Cells2Tissues
Cellular models for tissue function in development and agein...
3M€
Cerrado
i-SignalTrace
Deciphering signalling pathway dynamics during cell-fate com...
2M€
Cerrado
HeteroCancerInvasion
Effect of heterogeneity of cancer cells on collective invasi...
195K€
Cerrado
EUROSYSTEM
European Consortium for Systematic Stem Cell Biology
16M€
Cerrado
Información proyecto PHYSBIOHSC
Duración del proyecto: 67 meses
Fecha Inicio: 2017-03-09
Fecha Fin: 2022-10-31
Líder del proyecto
UNIVERSITY OF YORK
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The discovery of functional heterogeneity in normal and malignant stem cells has shifted our understanding of how single cells are subverted to drive cancer. To design therapies for diseases of stem cell origin and to better provide cell populations for clinical applications, it is critical to understand this diversity at the single cell level. This proposal focuses on understanding the complex biology of normal and malignant stem cells and the impact of individual mutations on clonal evolution by studying the physical and quantitative aspects of single blood stem cells.
This proposal aims to study single blood stem cell biomechanics and clonal evolution by leveraging new inter-disciplinary technologies and approaches and applying them to functionally defined mouse and human blood stem cell populations. It will combine in vitro and in vivo biological assays with mathematical modelling and microfluidic technology in an iterative manner across both human and mouse stem cell populations.