Understanding the melting dynamics in turbulent flows
Dissolving, eroding, and melting processes are ubiquitous in everyday life, nature, science, and technology. The challenge is to accurately predict the melting or dissolution rate e.g. of an iceberg or glacier---relevant for clima...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TROCONVEX
Turbulent Rotating Convection to the Extreme
2M€
Cerrado
Foundation
Building Virtual Worlds that Follow Universal Laws of Physic...
2M€
Cerrado
CGL2011-28499-C03-01
NUEVAS APORTACIONES A LA MODELIZACION DE FLUJOS DE FRONTERA...
15K€
Cerrado
MultiMelt
Melting and dissolution across scales in multicomponent syst...
3M€
Cerrado
RYC-2008-02319
Dinámica de mesoescala y submesoscala y reconstrucción del f...
59K€
Cerrado
CGL2009-12797-C03-01
PROCLAM-I: INVERSIONES SUPERFICIALES Y CHORROS DE CAPA BAJA...
154K€
Cerrado
Información proyecto MELTDYN
Duración del proyecto: 62 meses
Fecha Inicio: 2022-02-15
Fecha Fin: 2027-04-30
Líder del proyecto
UNIVERSITEIT TWENTE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Descripción del proyecto
Dissolving, eroding, and melting processes are ubiquitous in everyday life, nature, science, and technology. The challenge is to accurately predict the melting or dissolution rate e.g. of an iceberg or glacier---relevant for climate change---or of solid reactants in chemical reactors, important to accurately control reaction rates and temperatures. Current predictions for the melting of glaciers are often off by a factor of 100, and different melting models show inconsistencies. No general consensus of the cryospheric modeling has been reached yet. The difficulties in describing melting and dissolution stem from the multiscale nature of these processes (micrometers to kilometers) and the interaction between thermal, solutal, and viscous boundary layers and their complex interplay with the continuously reshaping boundary. A common belief is that melting always smooths the shape. However, from examples in nature and from theoretical analysis, it is clear that flows around melting or dissolving objects can create a rough (dimpled) surface, dramatically increasing the difficulty of accurate predictions. The objective of the project is to solve the gap in understanding and develop a quantitative understanding of the heat and mass transfer and the resulting melting and dissolution dynamics of fixed surfaces and freely-moving objects in turbulent flows from a fundamental fluid dynamics perspective. To do so, we will perform highly controlled lab experiments and numerical simulations, which allow for a combined experimental, numerical, and theoretical approach to reveal the underlying mechanisms of the melting and dissolution dynamics. Unique experimental flow facilities, the latest 3D optical measurements techniques, and advanced high-performance numerical schemes will allow for a one-to-one comparison between experiments and simulations. Given the societal relevance of climate change and the burning technol