Understanding the mechanical control of cell extrusion in collective assemblies
Epithelia are assemblies of multiple cells whose complex dynamic behavior relies on physical properties including jamming-unjamming mechanisms, active turbulence and active nematic principles. The homeostasis of epithelia is cruci...
Epithelia are assemblies of multiple cells whose complex dynamic behavior relies on physical properties including jamming-unjamming mechanisms, active turbulence and active nematic principles. The homeostasis of epithelia is crucial to maintain barrier function and integrity while epithelial cells are constantly challenged by the environment. To face these challenges, epithelia are dynamics and have to deal constantly with cell renewal and apoptotic extrusion, whose balance is key for epithelia homeostasis. On top of this role in tissue homeostasis, cell extrusion is a major cause of tissue shape changes and tumor progression. Extrusion mechanisms can thus lead to different cell fates namely dead or live cells but the factors selecting different cell fates are unknown. Extruding cells and their neighbors experience various mechanical stresses that lead to cell shape changes and could determine the way cells are extruded and their fate. However, these mechanical stresses and their impact on tissue organization remain to be determined.
From our recent study on emergent active nematic properties of epithelia, we hypothesize that mechanical constraints coming from the active forces generated by neighboring cells and the passive physical properties of the environment can determine the modes of cell extrusion and the fate of extruded cells. Here we propose to tackle the molecular mechanisms and physical principles that determine the manner by which cells are extruded and the collective response of surrounding cells, and to evaluate their contribution in tissue homeostasis, morphogenesis and tumor progression. By combining tools from soft matter physics, cell biology and engineering, our project will reveal how active and passive physical signals are overarching components of the behaviors of tissues at different temporal and spatial scales, and may further establish novel paths to understand the mechanobiology of epithelial tissues in normal and pathological conditions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.