Understanding the Atomic Scale Synergies of Catalytically Active Nanoclusters on...
Understanding the Atomic Scale Synergies of Catalytically Active Nanoclusters on Metal Oxide Surfaces
The research theme concerns the application of new experimental methods for atomic-scale characterization of model catalysts based on insulating metal oxides with the goal of exploring the potential for designing new and efficient...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
JCI-2010-06967
CARACTERIZACION DE LA ESTRUCTURA, PROPIEDADES ELECTRONICAS Y...
101K€
Cerrado
PRE2019-087571
CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTE...
98K€
Cerrado
MESOPOMs
Nanostructured Mesoporous Polyoxometalate and Transition Met...
100K€
Cerrado
ClusterCat
NanoEngineering of Model Catalysts Based on Supported Size...
210K€
Cerrado
MAT2017-82288-C2-1-P
MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADE...
145K€
Cerrado
Información proyecto OXIDESYNERGY
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The research theme concerns the application of new experimental methods for atomic-scale characterization of model catalysts based on insulating metal oxides with the goal of exploring the potential for designing new and efficient heterogeneous catalysts by enhanced control of the catalyst structure at the atomic level. This objective will be achieved by a carefully integrated sequence of synthesis, characterization, and reactivity measurements of model catalysts based on insulating metal oxides. The project aims in detail at resolving some pertinent support synergies and size-effects, which have been revealed in catalytic systems. A core challenge and advance, which sets the project apart from previous research, is the application of high-resolution non contact Atomic Force Microscopy (nc-AFM), which is the only available tool that can resolve the atomic structure of insulator surfaces and the morphology of supported nanoclusters. I will combine my proven experience with atom-resolved imaging using nc-AFM with novel methods for synthesizing and analyzing model catalysts, to provide groundbreaking new atomistic insight. A crucial aspect will be the ability to relate nc-AFM observations to actual catalytic properties, and this will be achieved by using complementary surface spectroscopies and reaction measurements performed at real high pressure conditions. I firmly believe that this research strategy can provide the key insight to a significantly better understanding of the numerous catalytic systems based on insulating metal oxides, and this project will enable me to set up a unique world-class experimental facility for such studies.