Understanding Social Ecological Systems Coupling population and satellite remot...
Understanding Social Ecological Systems Coupling population and satellite remotely sensed environmental data to improve the evidence base for sustainable development
In developing countries the majority of rural communities rely on natural resources and environmental products for food, fuel, building materials and medicines. Rapidly changing socioeconomic conditions can have important conseque...
ver más
13/02/2018
AU
212K€
Presupuesto del proyecto: 212K€
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto USES
Duración del proyecto: 34 meses
Fecha Inicio: 2015-03-23
Fecha Fin: 2018-02-13
Líder del proyecto
AARHUS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
212K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
In developing countries the majority of rural communities rely on natural resources and environmental products for food, fuel, building materials and medicines. Rapidly changing socioeconomic conditions can have important consequences for environmental resources and ecosystem services. Consequently, the pressure that natural resources experience from population growth is a significant barrier to sustainable human development. This research project will broaden the approach to sustainable development research by studying population-environment relationships using data with unrivalled spatial and temporal resolutions. The objectives of the research are to identify: (1) How satellite data can be used to estimate aspects of environmental resources and ecosystem services important for livelihoods; (2) the relationships between household poverty and remotely sensed environmental conditions? And are these relationships consistent at different time periods? and; (3) how changes in poverty relate to changes in environmental conditions and vice versa? To study these relationships household panel survey data and remotely sensed environmental data will be coupled using GIS and non-parametric Classification and Regression Trees (CART) and random forests models which can handle and represent meaningfully the complex, nonlinear relationships between poverty and environment. The project will contribute to the Horizon 2020 aim of furthering sustainability science by exploring how changes in society and the environment are linked and contribute to society beginning to think about interventions to managing environmental resources which could contribute to development and to understand the changes likely in environmental resources when development occurs. It will contribute to the Work Programme as the fellow will gain new skills and training in geospatial and computational ecology and become an EU leading specialist in a research field with a lot of growth potential.