Understanding Material Synthesis Conditions and Complexity at High-Pressure
Functional materials with outstanding technological properties can be found under extreme pressures and temperatures. This is particularly true for nitrides and hydrides, where the application of high-pressure high-temperature (HP...
Functional materials with outstanding technological properties can be found under extreme pressures and temperatures. This is particularly true for nitrides and hydrides, where the application of high-pressure high-temperature (HPHT) conditions has recently revealed an unexpectedly rich and complex chemistry and enabled the synthesis of compounds showing outstanding mechanical and electronic properties with applications in electronics, hard coatings, hydrogen storage, superconductivity and many more. However, great challenges remain to be conquered in order to truly explore the possibilities permitted by these exotic materials. Indeed, their properties often vanish when brought back to ambient conditions, either because the atomic arrangement or the underlying physical processes becomes energetically unfavourable. Moreover, the importance of finite-T effects and the structural and dynamical complexity of these HPHT phases, prohibit computations so far from efficiently guiding experimental synthesis.
The goal of this project is to provide the computational tools for guiding the efficient and targeted synthesis of next-generation technological materials, including the choice of synthesis conditions and precursor materials. We will search for materials retaining their functional properties under decompression or are directly synthesizable at ambient pressure. To accomplish this, we will develop a work flow based on machine learning inter-atomic potentials to numerically explore experimental synthesis conditions at ab-initio accuracy. This will enable an analysis of thermodynamic competition between different phases at HPHT and rigorous benchmarking against experiments to ensure that we truly portray nature's behaviour.This project will open up uncharted horizons for exploiting pressure and temperature as thermodynamic variables to explore new chemistry and synthesis pathways, ultimately guiding experiments towards industrially relevant novel technological materials.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.