Understanding gravity using a COMprehensive search for fast-spinning Pulsars And...
Understanding gravity using a COMprehensive search for fast-spinning Pulsars And CompacT binaries
The description of gravity by Einstein's theory of general relativity has passed all its experimental tests with flying colours including the recent groundbreaking direct detection of gravitational waves. However, there still rema...
The description of gravity by Einstein's theory of general relativity has passed all its experimental tests with flying colours including the recent groundbreaking direct detection of gravitational waves. However, there still remain some glaring shortcomings, ranging from its irreconcilability with quantum mechanics to the dark energy that accelerates the expansion of our Universe. There are also several alternative theories that contend to be the best descriptor of gravity. Hence it is imperative to find new laboratories to test these theories and further our understanding of gravity. This is where pulsars, a special type of star, prove useful. Pulsars are remarkable laboratories in space. Observations of pulsars at radio wavelengths provide rare opportunities to understand how gravity works near strongly self-gravitating bodies, and provide clues on the state of matter at supra-nuclear densities. This provides important complementary knowledge to our understanding of gravity and nuclear physics compared to other experiments such as ground-based gravitational wave detectors. COMPACT is an ambitious project that aims to discover some of the most extreme classes of pulsar laboratories. The project will perform Petabyte-scale data acquisition and processing to search for two specific kinds of pulsars: (i) relativistic binary pulsars with orbital periods of just a few minutes to a few hours around other neutron stars, white dwarves or black holes and (ii) pulsars with extremely fast spin periods of the order of a millisecond or less. Even a single discovery of either class of pulsars has the potential to fundamentally change (or) solidify a huge range of poorly known physics from the internal composition of neutron stars, how they evolve in binaries, to our understanding of the effects of strongly gravitating bodies to the space-time in their vicinity. The survey also has immediate and profound implications for gravitational wave astronomy across multiple wavelengtver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.