Understanding evolutionary abiotic stress network plasticity as foundation for n...
Understanding evolutionary abiotic stress network plasticity as foundation for new biotechnological strategies
Abiotic stresses, such as drought or salt stress, affect plant growth and threaten the capacity to feed a growing world population. Understanding and altering how plants deal with stress will be critical for society’s adaptation t...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SignStressPath
Networking by stress signalling pathways identification of...
176K€
Cerrado
BIO2016-80551-R
INTEGRACION DE SEÑALES DE ESTRES ABIOTICO Y ESTIMULOS AMBIEN...
206K€
Cerrado
BIO2011-23859
NUEVOS GENES Y PROCESOS IMPLICADOS EN LA TOLERANCIA A ESTRES...
238K€
Cerrado
BIO2008-01709
ANALISIS DE NUEVOS GENES Y PROCESOS IMPLICADOS EN LA TOLERAN...
260K€
Cerrado
PCOMOD
Targeting the Plant Cysteine Oxidases to Regulate Plant Stre...
2M€
Cerrado
PCIN-2013-014-C02-01
CONTROL DE LA RESPUESTA A ESTRES ABIOTICO POR LAS DELLAS Y C...
110K€
Cerrado
Información proyecto StressNetAdapt
Duración del proyecto: 74 meses
Fecha Inicio: 2015-06-18
Fecha Fin: 2021-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Abiotic stresses, such as drought or salt stress, affect plant growth and threaten the capacity to feed a growing world population. Understanding and altering how plants deal with stress will be critical for society’s adaptation to a changed climate. I propose a novel systems-biology based approach to identify biotechnological targets based on comparison of interaction and signalling networks of evolutionary related species that show differential abiotic stress tolerance. Similar to most crops, Arabidopsis thaliana is an abiotic-stress sensitive glycophyte whereas several close relatives are stress tolerant. This constitutes an opportunity to understand how plant stress-signalling networks are modified by evolutionary processes to adapt to novel environmental conditions.
Biological processes are mediated by physically and functionally interacting proteins. Especially stress response networks are rewired when plants adapt to new environmental conditions. I aim to experimentally map the abiotic stress networks of four closely related brassicaceae: A. thaliana, A. lyrata, A. halleri and E. salsugineum. Novel conceptual advances in interactome mapping and a state-of-the art interactome mapping pipeline will be exploited to ensure direct alignability of the resulting reference networks. In addition the dynamic signalling events under drought stress will be analysed. Using a combination of network alignment, graph theoretical and statistical analyses, data integration, and literature-informed criteria a ranked candidate list of stress response regulators will be assembled. These will be genetically and biotechnologically validated. First level candidates will be tested in Arabidopsis thaliana and evaluated with respect to stress tolerance and overall biomass production. The most promising targets will then be transferred to Brassica napus to evaluate the performance in a commercially relevant crop.