Understanding Dynamic Processes at Nanoscale Working Interfaces for Solar Energy...
Understanding Dynamic Processes at Nanoscale Working Interfaces for Solar Energy Conversion
To slow down global warming and to overcome the reliance on fossil fuels, a transition to a carbon neutral society fueled by renewable energy sources will be crucial. Therefore, the conversion of solar energy to storable, energy-d...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2013-42494-R
DESARROLLO DE FOTOANODOS CON NUEVAS NANOESTRUCTURAS DE OXIDO...
163K€
Cerrado
PID2019-106315RB-I00
MATERIALES HIBRIDOS NANOESTRUCTURADOS PARA LA PRODUCCION FOT...
249K€
Cerrado
PCIN-2017-131
DISEÑO DE FOTOCATALIZADORES ALTAMENTE EFICIENTES MEDIANTE CO...
97K€
Cerrado
PRE2020-094445
MATERIALES HIBRIDOS NANOESTRUCTURADOS PARA LA PRODUCCION FOT...
99K€
Cerrado
PID2021-126071OB-C21
APLICANDO MXENOS COMO CATALIZADORES DEFINITIVOS PARA LA PROD...
315K€
Cerrado
RTI2018-101611-B-I00
TRANSFORMACION FOTOCATALITICA DE CO2 EN COMBUSTIBLES SOLARES...
242K€
Cerrado
Información proyecto DynNano
Duración del proyecto: 69 meses
Fecha Inicio: 2022-12-03
Fecha Fin: 2028-09-30
Descripción del proyecto
To slow down global warming and to overcome the reliance on fossil fuels, a transition to a carbon neutral society fueled by renewable energy sources will be crucial. Therefore, the conversion of solar energy to storable, energy-dense fuels will be an important step to satisfy the need for clean and reliable power. Economically viable systems for solar-to-chemical conversion often base on thin film photoelectrodes with highly complex internal architectures. The combination of different length scales of fundamental physical processes and inherent film heterogeneities results in a complex micro- and nanoscale behavior, which often controls critical processes of the macroscale device. The typical macroscale characterization of material properties conceals important insights into structural, compositional, and optoelectronic heterogeneity at the nanoscale as well as into local photoelectrochemical reaction processes and material stability. To provide a comprehensive portrait of the elementary steps associated with light-to-chemical energy conversion at their natural length scales and under working conditions, DynNano will launch a multimodal research program by leveraging a complementary suite of emerging nanoscale techniques for in-situ and operando characterization of energy materials. The approach will be applied to novel transition metal oxynitride semiconductors, which are poised to overcome efficiency and stability limitations of pure oxides and pure nitrides. By thoroughly correlating their nanoscale and macroscale properties, DynNano will establish the link between nanoscale processes and macroscopic performance of photoelectrochemical systems. With the gained understanding, DynNano aims at closing the photoelectrochemical cycle at the nanoscale using precisely microstructured photoelectrodes for standalone water splitting. Overall, DynNano will provide the knowledge basis for rational development of efficient, stable, and scalable solar fuel devices.