Understanding and modifying cell-fate transitions during plant grafting
The remarkable regenerative capacity of plants to join wounded tissues together through a process known as grafting has been extensively used in agriculture to combine the best properties of two different plants into a single plan...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
UNROPO
Unlocking de novo Rooting Potential
2M€
Cerrado
BFU2013-41160-P
IDENTIFICATION Y CARACTERIZACION DE LOS DETERMINANTES MOLECU...
169K€
Cerrado
LAROSSE
Decoding the molecular basis of lateral root stem cell speci...
192K€
Cerrado
PID2020-113018RB-I00
NUEVOS DETERMINANTES MOLECULARES Y PEQUEÑAS MOLECULAS PARA A...
352K€
Cerrado
PID2019-110833RB-C31
REGULACION GENETICA DE LA ACTIVIDAD DE LOS MERISTEMOS REPROD...
202K€
Cerrado
PID2019-110510GA-I00
DESCRIFRANDO LAS FUNCIONES DE VAL Y ARNS LARGOS NO CODIFICAN...
85K€
Cerrado
Información proyecto UMOCELF
Duración del proyecto: 25 meses
Fecha Inicio: 2022-06-07
Fecha Fin: 2024-07-30
Descripción del proyecto
The remarkable regenerative capacity of plants to join wounded tissues together through a process known as grafting has been extensively used in agriculture to combine the best properties of two different plants into a single plant. Although grafting has been practiced for thousands of years, many agriculturally important plants are not possible to graft. One of the major limitations that prevent us from improving grafting efficiency is our poor understanding of the molecular mechanism of plant regeneration. When tissues are wounded and joined for grafting, the differentiated cells near the wound site modify their identity and acquire a dedifferentiated fate. These pluripotent cells then differentiate to form the missing cell types leading to tissue regeneration. However, it remains unknown how cells dedifferentiate in response to wounding and how they differentiate to heal tissues, the major problem to be addressed in this project. This gap in knowledge will be addressed by using multidisciplinary approaches that include my experience and skills in plant regeneration, molecular genetics and advanced microscopy, and the host lab's expertise in plant grafting, transcriptomics, and genetics of various plant species. The outcome of this research is expected to enhance the fundamental knowledge in cell-fate transition and vascular regeneration and provide powerful tools for improving grafting in various plant species. The project will allow me to be trained as an independent researcher in plant grafting and vascular regeneration. At the same time, the host lab will benefit from my expertise in plant regeneration and microscopy.