Uncovering turgor sensing in the Arabidopsis cambium.
Plant meristems integrate signals from water conditions to tune their proliferative activity and control growth. While extensive progress has been made elucidating water stress responses in plants, how cells in aerial meristems se...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2019-110510GA-I00
DESCRIFRANDO LAS FUNCIONES DE VAL Y ARNS LARGOS NO CODIFICAN...
85K€
Cerrado
BFU2013-41160-P
IDENTIFICATION Y CARACTERIZACION DE LOS DETERMINANTES MOLECU...
169K€
Cerrado
BFU2011-22825
ANALISIS A GRAN ESCALA DEL PAPEL MORFOGENETICO DE LA TRADUCC...
356K€
Cerrado
DECORE
Decoding the molecular control of bud dormancy release in tr...
204K€
Cerrado
LAROSSE
Decoding the molecular basis of lateral root stem cell speci...
192K€
Cerrado
RYC-2014-14981
Root and shoot apical meristems development: From Arabidopsi...
309K€
Cerrado
Información proyecto HYDROSTEM
Duración del proyecto: 25 meses
Fecha Inicio: 2024-03-04
Fecha Fin: 2026-04-30
Líder del proyecto
HELSINGIN YLIOPISTO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
200K€
Descripción del proyecto
Plant meristems integrate signals from water conditions to tune their proliferative activity and control growth. While extensive progress has been made elucidating water stress responses in plants, how cells in aerial meristems sense hydraulic fluctuations remains largely unknown. The vascular cambium (VC), the largest plant meristem, contributes to the radial growth of shoots and roots by producing xylem and phloem tissue. Theoretical models for cambial growth predict that water-dependent turgor pressure stimulates (locally) the proliferative activity in this meristem. These models are extensively supported by correlative studies in greenhouse and field conditions, yet how turgor pressure is sensed and transduced into a cell proliferation response is still unknown. This is what I would like to investigate during my postdoc at the Mähönen group. To do so, I will be trained in the design and implementation of the latest lineage tracing and genome editing tools from the hosting lab. I will contribute with my background in meristem hydraulics to reveal the dynamics of cambial cells under water deficit. Since the VC is directly connected with water-transporting cells, hydraulic fluctuations can have a direct physical effect in cambial cells, more specifically at the plasma membrane where key osmosensors are localized. Therefore, I will study the function of osmosensing channels in the context of cambial developmental plasticity. Finally, I will identify regulators of cambial activity dependent on water status. This project aims at 1) Generating a growth rate and cell fate map for the cambium under variations of water status, 2) Identifying osmosensing channels involved in the control of cambial activity, and 3) Uncovering cambial molecular factors transcriptionally sensitive to water status. Taken together, this project will provide me with a material and conceptual platform for developing a career studying the hydraulic control of plant growth.