Innovating Works

RePLASTIC

Financiado
Uncovering the Regulators of Cellular Plasticity by Direct Reprogramming
Cellular reprogramming has revolutionized stem cell biology by allowing the generation of stem cells, progenitors, or somatic cell identities with small combinations of transcription factors (TFs). Currently, the limited understan... Cellular reprogramming has revolutionized stem cell biology by allowing the generation of stem cells, progenitors, or somatic cell identities with small combinations of transcription factors (TFs). Currently, the limited understanding of how these different degrees of plasticity are established and maintained keeps on hold the application of reprogrammed cells in the clinic. With the RePLASTIC project, I propose to uncover novel regulators that define degrees of plasticity and control cell identity, with an interdisciplinary approach merging the fields of gene editing, stem cells and immunology. I will develop an innovative platform to evaluate the impact of gene knockout across the process of cell reprogramming in human cells, comparing multiple cell conversion scenarios: pluripotency, multipotency (hematopoietic stem cells) and unipotency (dendritic cells). For this, I will carry out a CRISPR/Cas9 knockout screening coupled with next-generation sequencing using custom-designed sgRNA libraries targeting TFs, chromatin regulators, and RNA modifiers. After sequencing, I will determine the molecular targets that are relevant by comparing the three reprogramming systems. Genes involved in cell conversion will be defined as regulators of plasticity, and top hits will be validated to study their molecular mechanism and role. Certainly, RePLASTIC will open new research avenues on the basic principles of cellular plasticity and provide ground-breaking technologies that may contribute to immunotherapy, regeneration and cancer. I will pursue this project as an incoming researcher supervised by Dr. Filipe Pereira (Lund University, Sweden). During my stay, I will acquire hands-on expertise in cutting-edge techniques: direct reprogramming, hematopoietic/immune cells, gene editing, deep sequencing. I will also gain experience in mentorship and writing skills and expand my network by attending national and international meetings to present my work and foster new collaborations. ver más
31/07/2024
223K€
Duración del proyecto: 25 meses Fecha Inicio: 2022-06-15
Fecha Fin: 2024-07-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2024-07-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 223K€
Líder del proyecto
LUNDS UNIVERSITET No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5