Uncooled Nanopillar Single Photon Avalanche Diodes NP SPADs at Telecommunicati...
Uncooled Nanopillar Single Photon Avalanche Diodes NP SPADs at Telecommunication Wavelengths
High efficiency detection of single photons at telecommunication wavelengths (notably at 1.55 µm) is critical for emerging technologies, such as free-space and on-fiber quantum information processing, eye-safe and long-distance li...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SuSiPOD
Broadband Superconducting Nanowire Single Photon Detectors
173K€
Cerrado
ASCEND
Advanced SuperConducting devices for ENhanced infrared Detec...
222K€
Cerrado
PID2020-112591RB-I00
LASERES INFRARROJOS DE ONDA CORTA BASADOS EN PUNTOS CUANTICO...
318K€
Cerrado
CNS2023-143986
Microelectrónica, nanotecnología y fotónica
192K€
Cerrado
Información proyecto NP-SPAD
Duración del proyecto: 32 meses
Fecha Inicio: 2019-04-11
Fecha Fin: 2021-12-31
Líder del proyecto
CARDIFF UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
225K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
High efficiency detection of single photons at telecommunication wavelengths (notably at 1.55 µm) is critical for emerging technologies, such as free-space and on-fiber quantum information processing, eye-safe and long-distance light detection and ranging (LiDAR), and highly sensitive remote sensing. This research project aims to meet this critical need by developing III-V nanopillar-based uncooled single-photon avalanche diodes (NP-SPADs), which are composed of nanostructured InAsP-InP Geiger-mode avalanche photodiodes (GmAPDs) with self-assembled plasmonic gratings, operating at 1.55 µm. Compared with commercially available InGaAs(P)-InP GmAPDs, the proposed device scheme significantly suppresses thermally generated carriers and trap state population by a factor of 20 to 100 due to the extremely small fill factor of nanopillar arrays (less than 5%). All the while, sufficient optical absorption is maintained via surface plasmon resonance by the plasmonic gratings. The sum combination of these unique capabilities offers the promise of achieving NP-SPADs with free-running mode operation, high photon detection efficiency (PDE; probability of detecting a single photon) of 10 – 20%, low dark count rate (DCR; rate of false detection) of ~50 Hz, and high photon count rate ≥5 MHz. If successful, this approach can drastically stimulate the development and commercialization of high performance semiconductor-based NP-SPADs, putting European Union (EU) at the forefront of cutting-edge technology in single photon detection.