Unbiased Biomarkers for the Prediction of Respiratory Disease Outcomes
RationaleThe inability of pre-clinical studies to predict clinical efficacy is a major bottleneck in drug development. In severe asthma this bottleneck results from: a lack of useful and validated biomarkers, underperforming pre-c...
RationaleThe inability of pre-clinical studies to predict clinical efficacy is a major bottleneck in drug development. In severe asthma this bottleneck results from: a lack of useful and validated biomarkers, underperforming pre-clinical models, inadequate and incomplete sub-phenotyping, and insufficient disease understanding.HypothesisThe use of biomarker profiles comprised of various types of high-dimensional data, integrated with an innovative systems biology approach into distinct phenotype handprints, will enable significantly better prediction of therapeutic efficacy than single or even clustered biomarkers of one data type and will identify novel targets.StrategyU-BIOPRED proposes a staged-strategy:I)Generating an international consensus on diagnostic criteria for severe asthma.II)Unbiased discovery of sub-phenotypes of severe asthma in adult and paediatric patient cohorts using biomarker profiles (fingerprints”) and systems biology to define phenotype/handprints”.III)Validating the handprints for exacerbations, disease progression, and experimental challenges.IV)Using the handprints to improve human/animal in vivo and ex vivo models.V)Establishing the responsiveness and predictability of the handprints in gold standard and experimental therapeutic interventions.VI)Refinement of the diagnostic criteria and definition of severe asthma sub-phenotypes by incorporating the handprints, thereby enabling more focused drug development and faster delivery proof of concept for novel drugs.VII)Education, training and dissemination through a stakeholder platform and academic-industrial exchange, with potential for further growth as appropriate.Innovative approachWe will use a novel systems biology approach to integrate high dimensional data from invasive, non-invasive and patient-reported outcomes. All studies will include academic and EFPIA partners as active contributors.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.