Electromagnetic waves interacting with materials give rise to polaritons, hybrid excitations of light and matter. Among these, hyperbolic phonon polaritons (HPhPs) in polar crystals stand out for their low loss and anisotropic beh...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
FIS2015-69295-C3-1-P
HACES ESTRUCTURADOS DE LUZ Y ELECTRONES: EFECTOS MECANICOS Y...
42K€
Cerrado
MAT2017-88358-C3-1-R
NUEVOS FENOMENOS EN NANOFOTONICA CON MATERIALES AVANZADOS
145K€
Cerrado
Información proyecto UTOPIA
Duración del proyecto: 41 meses
Fecha Inicio: 2024-04-23
Fecha Fin: 2027-09-30
Líder del proyecto
POLITECNICO DI MILANO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
265K€
Descripción del proyecto
Electromagnetic waves interacting with materials give rise to polaritons, hybrid excitations of light and matter. Among these, hyperbolic phonon polaritons (HPhPs) in polar crystals stand out for their low loss and anisotropic behavior. Concurrently, Floquet theory has gained prominence in nanophotonics, enabling the engineering of topological properties in periodically driven systems. The UTOPIA project aims to merge these domains, establishing ultrafast Floquet polaritonics as a cutting-edge field. It seeks to demonstrate this concept in natural van der Waals materials and synthetic metasurfaces. Polariton research has evolved from plasmon polaritons to encompass phonons, excitons, and Cooper pairs. Phonon polaritons, with their anisotropic response, have opened avenues for nanophotonics. Recent discoveries in two-dimensional van der Waals materials like hexagonal boron nitride have unveiled hyperbolic polaritons in natural crystals. UTOPIA bridges phonon polaritons and Floquet theory, aiming to pioneer tailored light-matter interactions. Floquet systems endow physical systems with synthetic dimensions via periodic potentials, enabling nonreciprocal systems, topological phases, and 4+ dimensional physics. While Floquet quasi-energy states have been demonstrated in graphene, the field of Floquet polaritonics remains underexplored, lacking a demonstration of temporally driven changes in phonon polariton dispersion.UTOPIA's objectives include: 1) Demonstrating Floquet-driven topological polaritonic transitions via grating coupling in natural materials, mapping near-field observables to the far-field and enabling dynamical phase transitions. 2) Designing metasurfaces supporting synthetic hyperbolic polaritons, expanding Floquet polaritonics to optical frequencies and various temporal modulations.3) Achieving infrared light amplification via polariton-assisted anisotropic parametric amplification, harnessing polaritonic excitations for efficient amplification.