Ultrafast Control of Interlayer Coupling of Two-Dimensional Layered Materials
Layered two-dimensional materials are novel quantum materials considered as the basis for future-generation electronics. The electronic and optical properties of such materials critically depend on so-called interlayer coupling –...
Layered two-dimensional materials are novel quantum materials considered as the basis for future-generation electronics. The electronic and optical properties of such materials critically depend on so-called interlayer coupling – the interaction between the neighboring atomic layers within the material. What is of particular interest is that one can modulate this interlayer coupling, and thereby the material’s properties, by applying an electric field in the out-of-plane direction of the atomic layers. In this project, I focus on a typical semiconductor layered material called transition-metal dichalcogenides (TMDC). In TMDC, bandgap modulation with DC electric fields was recently achieved. However, the limitation of the modulation speed remains yet unclarified. In addition, the expected insulator-metal transition at the strong-field limit has not yet been realized because the required strong field causes a dielectric breakdown of the material.This project aims to (1) Realize ultrafast control of electronic properties of layered materials via direct ultrafast manipulation of interlayer coupling, (2) Identify the speed limitations to this controlling mechanism, and (3) Realize the insulator-metal transition in the layered material via the ultrafast control scheme. To investigate the ultrafast dynamics, I will utilize the terahertz technology, which enables us to apply a very short pulse of an electric field - a terahertz pulse - to the material and observe the change of its optical properties in an ultrafast timescale. A newly proposed micrometer-sized device, which converts an incident terahertz pulse to a strong out-of-plane electric field on TMDC, will enable ultrafast property control.The proposed scheme will be applicable for the ultrafast control of quantum phases in various layered-material systems. It is also expected to be applied as optoelectronic and all-optical ultrafast switches, which are important milestones for future ultrafast technologies.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.