Ultracapacitors (also referred to as Supercapacitors or ElectricUltracapacitors (also referred to as Supercapacitors or Electric Double Layer Capacitors, EDLCs) stand out as high power devices for ultrafast energy storage. A new p...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
3D-APP
High-energy micro-supercapacitors based on low-cost material...
150K€
Cerrado
UPLIFT
Ultralow-power logic-in-memory devices based on ferroelectri...
150K€
Cerrado
P.CAP
Planar CAPacitors for high temperature and mid-frequency ope...
2M€
Cerrado
ENE2014-56109-C3-3-R
NANOCOMPUESTOS HIBRIDOS DE CARBONO Y OXIDOS METALICOS PARA S...
145K€
Cerrado
UltraBat
CAPTURING ULTRAFAST ELECTRON AND ION DYNAMICS IN BATTERIES
5M€
Cerrado
SASPE
Subduing Self-discharge of All-solid-state supercapacitors b...
200K€
Cerrado
Información proyecto IONOLOGIC
Duración del proyecto: 67 meses
Fecha Inicio: 2022-07-12
Fecha Fin: 2028-02-29
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ultracapacitors (also referred to as Supercapacitors or ElectricUltracapacitors (also referred to as Supercapacitors or Electric Double Layer Capacitors, EDLCs) stand out as high power devices for ultrafast energy storage. A new paradigm is to use ion electroadsorption devices for logic information processing. In living organisms, ions and chemical transmitters are involved in signaling, managing logic operations and memory, evolutionary optimized in terms of energy-efficiency. My group recently reported the first switchable and directional ultracapacitor devices emulating discrete electronic circuit elements (diode, transistor) as basic building blocks for the realization of logic operations, an important step towards ultracapacitor-based ion information signaling and processing.
IONOLOGIC targets the conceptual design and realization of capacitive logic gates (AND, OR, NAND, etc.) based on ion electroadsorption in nanoporous carbons by integrating multiple switchable EDLC elements into monolithic microdevices. The deliberate deployment of nanoporous carbons and membranes with defined pore size and surface functionality, selective ion-sieving mechanisms, electrolyte depletion and charge transport in nanopores will lead to intrinsic IONOLOGIC gates. Nanoimprint lithography and piezo-printing of nanoporous carbon electrodes offers an emerging enabling technology for monolithic integration of complex electrode structures to finally interconnect multiple gates on a chip. A highly interlaced team architecture conceptualizes switchable ultracapacitors and ion-circuits, designs nanopore-electrolyte pairs, develops new precursor and processing concepts for on chip-deposition of nanoporous materials, and finally realizes prototypical monolithic logic gates.
IONOLOGIC constitutes the basis for novel ion-based computing technologies to reduce energy dissipation in computing architectures and enable on-chip power management in autonomous microelectronic devices in future.