TWAICE predictive analytics and digital twin ecosystem to optimise and automate...
TWAICE predictive analytics and digital twin ecosystem to optimise and automate batteries second life and re-use
Our solution solves the major cost and safety problems posed by batteries. TWAICE’s predictive battery analytics platform can be implemented at all stages of the battery value chain, optimizing processes such as development, opera...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto Predictive Battery Analytics
Duración del proyecto: 24 meses
Fecha Inicio: 2022-09-13
Fecha Fin: 2024-09-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Our solution solves the major cost and safety problems posed by batteries. TWAICE’s predictive battery analytics platform can be implemented at all stages of the battery value chain, optimizing processes such as development, operation and re-use (second life). There is a substantial lack of transparency in Li-ion batteries, a problem which can lead to overly high development and operation costs and pose safety risks. Our software addresses this problem by empowering customers to better understand their batteries. They can obtain precise diagnoses and prognoses on battery health and remaining lifetimes, using this information to inform their strategic operational decisions. Underpinned by digital twin technology, we combine battery knowledge with artificial intelligence and machine learning to solve the specific customer needs mainly in the energy and mobility sector. Wherever it is applied, our solution will make significant contributions to reducing CO2 and ensuring a greener future.