Descripción del proyecto
During the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to exciting applications, both in basic research and clinical applications. The use of magnetic fields in combination with magnetic nanoparticles provides with an exclusive tool to study how cells transform mechanical stimuli into biochemical signals, shedding light on these mechanotransduction processes. This tool is emerging as a new instrument to remotely manipulate biological functions with high spatiotemporal control at a deep-tissue level, a hot topic in regenerative medicine. The overall aim of MAGPIEZ is to develop a novel platform to study mechanotransduction linked to Piezo1 channels in endothelial cells by remotely manipulating magnetic nanoparticles. A secondary goal is to validate the potential of this tool to stimulate signalling pathways related to cell proliferation in order to selectively boost angiogenesis. This can stand as a promising approach for therapeutic angiogenesis in ischemic disorders. This ambitious project will be validated using 2D endothelial cells and a 3D vascular network developed using a microfluidic chamber. MAGPIEZ is a highly multidisciplinary project that takes advantage of the Fellow´s Dr. Del Sol knowledge in Materials Science (advanced synthesis and characterization of magnetic nanoparticles, magnetism and physics) and the expertise of the host group supervisor (Dr. M. Moros, Institute of Nanoscience and Materials of Aragon INMA-CSIC) in biofunctionalization of nanoparticles and magnetogenetics. This project will offer the applicant the possibility to work in a top European institution who pioneered the use of nanomaterials for biomedical applications, and to develop new skills and knowledge necessary for the progress of her scientific career towards an independent position