I will expand the experimental reach of tunneling spectroscopy to new materials and device geometries. The technique is ideal for tackling two challenges: (i) Probing Andreev bound states and Majorana states in graphene and topolo...
I will expand the experimental reach of tunneling spectroscopy to new materials and device geometries. The technique is ideal for tackling two challenges: (i) Probing Andreev bound states and Majorana states in graphene and topological insulators (TIs) coupled to superconductors, and (ii) realizing momentum-conserving tunneling.
I will utilize a breakthrough in device fabrication to stack layered van-der-Waals materials, such as graphene and hexagonal Boron Nitride (hBN), to form vertical structures. Ultrathin layers of mechanically deposited dielectrics will be used as tunnel-barriers. These can interface any smooth surface, expanding the range of possible device-based tunneling systems.
A tunnel junction has decisive advantages over STM in access to lower temperatures and hence higher energy resolution. Significantly, the effort to probe the energy spectra of graphene and TIs coupled to superconductors is often resolution-limited. I will develop artificial-vortex devices and Josephson devices where induced spectra are expected to reveal the Majorana mode, a quantum state of unusual statistics sought as a platform for fault-tolerant quantum computation.
Using the same technology, I will develop devices where tunneling takes place between extended states. The aim is to realize momentum resolved tunneling for μeV-resolution measurement of dispersions in graphene, other 2D systems, and smooth interfaces. Momentum control will be achieved using density-tuning of the Fermi surfaces or using parallel magnetic field. The high resolution spectra will reveal details of interaction effects, manifest as modifications to the single-electron picture.
Carriers can be injected into a system with full control over their direction and energy – a powerful experimental knob, useful for injecting carriers using one electrode and extracting them in another. Such geometry is sensitive to relaxation effects, and will allow unprecedented resolution studies of out-of-equilibrium systems.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.