Tuning Exciton diffusion through Charge-Transfer Excitations in Supramolecular A...
Tuning Exciton diffusion through Charge-Transfer Excitations in Supramolecular Assemblies
Energy migration, by which bound electron-hole pairs (i.e. singlet excitons) travel through an organic semiconductor before decaying, is at the heart of functioning optoelectronic devices such as solar cells. Designing materials w...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2010-18859
ESTUDIO DE MOLECULAS OPTICA Y ELECTROQUIMICAMENTE ACTIVAS Y...
75K€
Cerrado
OP-FISSION
Application of Organic Polaritonics to Post-Synthesis Improv...
265K€
Cerrado
PID2021-128569NB-I00
MODELIZACION COMPUTACIONAL DE MATERIALES MOLECULARES ELECTRO...
175K€
Cerrado
PoTA-LEC
Engineering Phosphorescent and TADF small molecules for whit...
190K€
Cerrado
JCI-2008-2765
Modelizacion de materiales moleculares y nanoestructuras. Es...
101K€
Cerrado
PARACRYST
The Semi-paracrystalline Organization in Polymers: Towards S...
2M€
Cerrado
Información proyecto TECTESA
Duración del proyecto: 30 meses
Fecha Inicio: 2023-03-16
Fecha Fin: 2025-09-30
Líder del proyecto
UNIVERSITE DE MONS
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
176K€
Descripción del proyecto
Energy migration, by which bound electron-hole pairs (i.e. singlet excitons) travel through an organic semiconductor before decaying, is at the heart of functioning optoelectronic devices such as solar cells. Designing materials with large singlet exciton diffusion lengths Ld would strongly benefit the efficiency of such devices. In this context, recent reports in highly ordered polymeric fibers and non-fullerene acceptor thin films of Ld largely exceeding the typical 10-20nm values call for a detailed microscopic picture going beyond the usual (hopping) models. Among others, a key missing ingredient in most modelling studies so far deals with the role of inter-molecular charge-transfer (CT) excitations. These have the potential to magnify the exciton dispersion at the band bottom or act as gateways for long-range energy migration, but could equally be detrimental to transport due to the formation of low-lying energy traps. In TECTESA, we aim at providing an in-depth mechanistic analysis of singlet exciton diffusion in organic molecular semiconductors in presence of CT configurations, highlighting namely their contrasting effects on the shape of the thermally accessible excitonic density of states and the coupling to the nuclear degrees of freedom. To reach this ambitious goal, we will: (i) develop and implement a universal transport formalism based on mixed classical-quantum non-adiabatic molecular dynamic simulations that explicitly accounts for CT excitations; (ii) explore how intermolecular CT configurations affect the nature and dynamics of singlet excitons in reduced models, through a broad range of physical situations (from superexchange to hybridization and trapping); and (iii) apply our newly developed approach to study energy migration in realistic, fully atomistic, models for N-heterotriangulene supramolecular fibers and non-fullerene Y6 molecular acceptors, where preliminary investigations seem to intimate the presence of low-lying CT pairs.