Tunable Nanoengineered Transition Metal Dichalcogenides for Quantum Nanophotonic...
In optical quantum computing, qubits are encoded on single indistinguishable photons emitted by single-photon sources (SPSs). The computation is carried out by interfering single photons and by measuring the output using single-ph...
In optical quantum computing, qubits are encoded on single indistinguishable photons emitted by single-photon sources (SPSs). The computation is carried out by interfering single photons and by measuring the output using single-photon detectors. A scalable optical quantum computer requires many individual SPSs emitting indistinguishable single photons, however, different SPSs emit light at slightly different wavelengths due to fabrication imperfections. This issue can be resolved by implementing an active control for each SPS to ensure generation of completely identical photons. Despite recent progress, active control of individual SPSs still remains one of the biggest challenges in future quantum technologies. Moreover, the vision of constructing an on-chip platform by integrating SPSs, waveguides, and detectors into a single planar chip is challenging due to the complicated integration of the conventional material platforms.
The TuneTMD project aims at developing a tunable on-chip integrated optical circuit using fully nanoengineered mono- and multilayer transition metal dichalcogenides (TMDs), and performing Hong-Ou-Mandel experiments on-chip. I hypothesize that unique optical and physical properties of multilayer TMDs such as high refractive index, low loss at telecom range, active tuning capability, and easy integration between different types of TMDs, combined with optimized nanopatterning techniques make nanoengineered TMDs the ideal semiconductor platform to build tunable, on-chip, fully integrated quantum optical circuits. I will exploit my expertise in nanophotonics and 2D materials to fabricate novel TMD photonic devices, e.g. SPS, waveguide, beamsplitter, and detector. Then I will integrate them on a chip to construct fully integrated quantum optical circuits. Finally, to demonstrate the ground-breaking nature of the proposed platform, I will perform a Hong-Ou-Mandel experiment with two tunable sources.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.