Trustworthy Artificial Intelligence for Personalised Risk Assessment in Chronic...
Trustworthy Artificial Intelligence for Personalised Risk Assessment in Chronic Heart Failure
Cardiovascular diseases remain the main cause of mortality worldwide; in particular, heart failure (HF) poses complex challenges in clinical practice, as it is associated with a significant variability in aetiologies, manifestatio...
Cardiovascular diseases remain the main cause of mortality worldwide; in particular, heart failure (HF) poses complex challenges in clinical practice, as it is associated with a significant variability in aetiologies, manifestations and risks, as well as in its progression and trajectories over time. Clinical risks of HF can vary from reduced cardiac function and regular hospitalisations, all the way to cardiac events and mortality. There is a need for a personalised medicine approach to tailor the care models (i.e. lifestyle changes, medications, interventions) to each HF patient’s risk profile and hence optimise the clinical outcomes. Artificial intelligence (AI) solutions trained from multi-source cardiovascular data have the potential to dissect the precise characteristics of each patient and predict their likely trajectories at an early stage. However, existing AI methods remain a far distance from clinical transfer and adoption due to a common and key limitation: their trustworthiness and acceptance by cardiologists and patients alike have not been achieved.AI4HF will develop the first trustworthy AI solutions for personalised risk assessment and management of HF patients. The project will build on a unique set of big data repositories, trustworthy AI methods, computational tools and clinical results from major EU-funded projects in cardiology. To test robustness, fairness, transparency, usability and transferability, the validation with take place in eight clinical centres in both high- and low-to-middle-income countries in the EU and internationally. AI4HF will develop a comprehensive and standardised methodological framework for trustworthy and ethical AI development and evaluation based on the FUTURE-AI guidelines developed by the consortium members. AI4HF will be implemented through continuous multi-stakeholder engagement, taking into account clinical needs and patient preferences, as well as socio-ethical and regulatory perspectives.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.