Modern machine learning algorithms have the potential to accelerate personalized medicine in a fast pace. To date, first tasks in medicine are being addressed with machine learning algorithms that surpass humans in terms of accura...
Modern machine learning algorithms have the potential to accelerate personalized medicine in a fast pace. To date, first tasks in medicine are being addressed with machine learning algorithms that surpass humans in terms of accuracy and speed, including diagnosis, outcome prediction and treatment recommendation. However, for a widespread adoption in clinical practice, a good performance in terms of speed and accuracy is not sufficient: practitioners also need to be able to trust a model’s prediction in all stages of its life cycle.I will facilitate an efficient interaction of clinicians with AI models by developing trustworthy AI tools for personalized oncology: First, I will develop trustworthy AI tools and algorithms for diagnosis and stratification of cancer patients. Second, I will establish a framework for reliable and transparent modelling of personalized outcomes and therapy decisions in oncology.TAIPO will result in novel algorithms and software tools for quantifying and improving the trustworthiness of AI models that I will apply to three clinical applications: (i) trustworthy AI-based skin lesion classification based on dermoscopic images, (ii) stratification and personalized outcome modelling for patients with acute myeloid leukaemia (AML) based on omics data, and (iv) therapy recommendation for metastatic breast cancer patients based on electronic health records.TAIPO will increase the throughput of trustworthy diagnoses of skin lesions and pave the way for low-cost access to diagnostic care. It will empower clinicians to make personalized and reliable therapy decisions, which we will demonstrate at the example of AML and metastatic breast cancer. Our novel algorithms to evaluate and improve the reliability of AI models are a crucial contribution to close the gap between in-silico AI-bench and bedside and will further push the field of trustworthy machine learning with many applications of AI in medicine.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.