Considering Artificial Intelligence (AI) capabilities and potential risks, and taking into account its limitations, AI4CCAM will develop an open environment for integrating trustworthy-by-design AI models of vulnerable road user b...
ver más
31/12/2025
Líder desconocido
6M€
Presupuesto del proyecto: 6M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2022-10-21
Este proyecto no cuenta con búsquedas de partenariado abiertas en este momento.
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
Participantes
Conecta tu I+D
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto AI4CCAM
Duración del proyecto: 38 meses
Fecha Inicio: 2022-10-21
Fecha Fin: 2025-12-31
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
6M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Considering Artificial Intelligence (AI) capabilities and potential risks, and taking into account its limitations, AI4CCAM will develop an open environment for integrating trustworthy-by-design AI models of vulnerable road user behaviour anticipation in urban traffic conditions, and accounting for improved road safety and user acceptance. Leveraging the Trustworthy AI guidelines for general intelligent software systems and the ethics recommendations for connected automated vehicles, AI4CCAM will support AI-based scenarios management in which pedestrian/cyclist behaviour anticipation models will integrate visual gaze estimation and where explainable ego car trajectory prediction models are simulated with ethical dilemmas and multiplied with generative adversarial networks and metamorphic testing techniques. The AI4CCAM open environment will include an interoperable digital framework for managing and generating AI-based urban-traffic scenarios in which trustworthy-by-design AI models can be tested and an online participatory space to foster acceptance of AI in automated driving, determine AI risks and identify biases in datasets and cyber-threats. Simulation scenarios of road users interacting with automated vehicles will be developed and evaluated in three complementary use cases covering the whole sense-plan-act paradigm and user acceptance. As such, the project will advance knowledge in building trustworthy-by-design AI-based solutions for CCAM applications.