We live on an active planet enveloped by ever shifting tectonic plates. The strain induced by these movements is accommodated by faults – thin zones of highly localized shear deformation. Faults deform, interact and fail via multi...
We live on an active planet enveloped by ever shifting tectonic plates. The strain induced by these movements is accommodated by faults – thin zones of highly localized shear deformation. Faults deform, interact and fail via multiple physical processes (brittle, plastic, viscous) and across extremely large spatial (<1mm to >100km) and temporal (<0.001s to >10.000yr) scales. While increasingly dense observational networks and advanced laboratory experiments reveal a broad range of fault slip behaviour, the most useful thing seismologists could do - predict earthquakes – remains what we are least able to.
The aim of TEAR is to comprehensively study, for the first time, the full complexity of fault system behaviour throughout the seismic cycle revealing how faults slip. Truly multi-scale and multi-physics computational models are validated against laboratory friction experiments, dense fault zone observations and analysis of induced seismicity.
Conventionally, earthquakes are modelled as displacement discontinuity across a simplified surface of zero thickness based on linear elastodynamics. In contrast, TEAR will harness novel continuum phase-field theory and cutting-edge numerical techniques to develop, verify and validate a generalized visco-elasto-plastic framework including 1) visco-elastic rheologies suitable for short and long time scales, 2) spatial discretizations which capture localization phenomena (fault evolution), 3) time integrators which adapt dynamically to capture seismic events, 4) scalable high performance computing software to enable high resolution 3D simulations.
By utilizing the extensive experience of the PI in earthquake modelling and high-performance computing, including the management of large-scale infrastructural projects, TEAR will not only fundamentally renew our understanding of fault slip and fault zone evolution, but provide key tools for the fast, reliable, efficient and physics-based seismic hazard assessment of the future.ver más
14-11-2024:
Cataluña reutilizaci...
Se abre la línea de ayuda pública: Subvenciones para la ejecución de proyectos de prevención, preparación para la reutilización y reciclaje de residuos industriales para el organismo:
11-11-2024:
Asturias Hiperautoma...
Se ha cerrado la línea de ayuda pública: Proyectos de I+D+i que implementen soluciones en hiperautomatización en empresas para el organismo:
11-11-2024:
Cooperación I+D+i La...
Se ha cerrado la línea de ayuda pública: Proyectos colaborativos de desarrollo experimental e innovación que resuelvan retos en La Rioja para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.