TRophic state Interactions with drivers of Aquatic greenhouse Gas Emissions
Inland waters are an integral component of the carbon cycle as they process, store, transport, and emit significant amounts of carbon. Freshwaters emit carbon in the form of carbon dioxide (CO2) and methane (CH4), both important g...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
IJCI-2016-31135
Ciclos biogeoquímicos en ecosistemas marinos, afloramiento c...
64K€
Cerrado
RYC-2017-22032
Biogeochemical cycling and community assembly in terrestrial...
309K€
Cerrado
CGL2013-48074-P
IMPACTOS DE LA CRECIENTE DESPROPORCION AMBIENTAL ENTRE N Y P...
339K€
Cerrado
SLAVONIC
Effects of soil alteration on nitrogen and carbon cycling
100K€
Cerrado
RTI2018-094640-A-I00
PREDICCION DE RESPUESTAS DE LOS ECOSISTEMAS ACUATICOS A CAMB...
184K€
Cerrado
TED2021-132083A-I00
TURBERAS PIRENAICAS Y CICLO DEL CARBONO: EL PAPEL DEL SOBREP...
133K€
Cerrado
Información proyecto TRIAGE
Duración del proyecto: 35 meses
Fecha Inicio: 2018-03-02
Fecha Fin: 2021-02-28
Líder del proyecto
UNIVERSITE DE GENEVE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
187K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Inland waters are an integral component of the carbon cycle as they process, store, transport, and emit significant amounts of carbon. Freshwaters emit carbon in the form of carbon dioxide (CO2) and methane (CH4), both important greenhouse gases (GHG). Lakes subject to a high nutrient load in a process called eutrophication are typically characterized by enhanced primary production and depleted oxygen, variables directly related to GHG production. Therefore, with increasing nutrient load (i.e., trophic state), lakes have the potential to substantially impact GHG emission, but the relationship is poorly constrained. Climate change-induced variations in variables such as temperature and precipitation could alter nutrient loading, primary production and oxygen, which in turn could change the GHG balance of a system. Evidence suggests that lake eutrophication and climate change impacts interact and alter the lake GHG budget in non-linear ways. Moreover, eutrophication may shift the balance toward higher emissions of CH4, a more potent GHG. To date, very few studies have used a systematic approach to understanding the interaction between GHG emissions and eutrophication, which is essential for efficient management of inland waters, particularly in the face of global change.
The overall goal of the project is determine how the GHG balance of aquatic systems shift along a trophic gradient and what some of the drivers of these shifts may be. The project will consist of a multi-lake survey throughout central Europe across a large trophic gradient, followed by modeling of the full GHG balance of those lakes and testing of the strength of relevant drivers. Constraining the variables that dictate the GHG balance will help to inform better management practices for mitigating climatic impacts on aquatic systems as well as allow for the development of models capable of predicting the response of aquatic systems to global environmental changes.