Triaxial stresses, anisotropic damage, and directional fluid flow across scales
The ability to accurately predict both the magnitude and direction of fluid flow within fractured rocks is paramount for the secure injection of fluids into the subsurface—an essential operation for geothermal energy production an...
The ability to accurately predict both the magnitude and direction of fluid flow within fractured rocks is paramount for the secure injection of fluids into the subsurface—an essential operation for geothermal energy production and CO2 storage. Even though the stress conditions at depth control the creation of fractures and the transport of fluids through them, technical difficulties have impeded the replication of crustal conditions in the laboratory, and the knowledge of fracture development comes primarily from experiments conducted under simplified two-dimensional stress conditions. This limited perspective has restricted the understanding of the interplay between three-dimensional stresses, the geometry of developed fracture networks, and the direction of fluid flow within fractured rocks. Furthermore, a key challenge for large-scale fluid flow prediction is the extrapolation of results obtained at the laboratory scale (centimetres) to actual reservoir scale (hundreds of meters to kilometres). This project, TRIFLOW, will use for the first time a novel apparatus to deform samples under representative crustal conditions to establish how 3D stresses influence fracture geometry and directional permeability. These results will be combined with innovative 3D mapping methods applied to natural examples of fossilised fluid flow in the form of vein networks, and numerical analyses, to study the dynamics of tridimensional fluid flow across scales. The outcomes of this project are expected to bring substantial advancements to our comprehension of fluid flow dynamics under genuine crustal conditions. This improved understanding will, in turn, enhance the precision of fluid flow simulations for applications involving the injection of fluids into fractured rocks, thereby contributing to the safety of processes such as geothermal fluid injection for energy generation and CO2 storage, both of which are crucial solutions for reducing greenhouse emissions to the atmosphere.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.