TRANSPARENT ARTIFICIAL INTELLIGENCE AND AUTOMATION TO AIR TRAFFIC MANAGEMENT SYS...
TRANSPARENT ARTIFICIAL INTELLIGENCE AND AUTOMATION TO AIR TRAFFIC MANAGEMENT SYSTEMS
Recently, Artificial intelligence (AI) algorithms have shown increasable interest in various application domains including in Air Transportation Management (ATM). Different AI in particular Machine Learning (ML) algorithms are use...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HAAWAII
Highly Automated Air Traffic Controller Workstations with Ar...
2M€
Cerrado
TAPAS
Towards an Automated and exPlainable ATM System
997K€
Cerrado
Información proyecto ARTIMATION
Duración del proyecto: 26 meses
Fecha Inicio: 2020-10-19
Fecha Fin: 2022-12-31
Líder del proyecto
MALARDALENS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
999K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Recently, Artificial intelligence (AI) algorithms have shown increasable interest in various application domains including in Air Transportation Management (ATM). Different AI in particular Machine Learning (ML) algorithms are used to provide decision support in autonomous decision-making tasks in the ATM domain e.g. predicting air transportation traffic and optimizing traffic flows. However, most of the time these automated systems are not accepted or trusted by the intended users as the decisions provided by AI are often opaque, non-intuitive and not understandable by human operators. Safety is the major pillar to air traffic management, and no black box process can be inserted in a decision-making process when human life is involved. In order to address this challenge related to transparency of the automated system in the ATM domain, ARTIMATION focuses on investigating AI methods in predicting air transportation traffic and optimizing traffic flows based on the domain of Explainable Artificial Intelligence (XAI). Here, AI models’ explainability in terms of understanding a decision i.e., post hoc interpretability and understanding how the model works i.e., transparency can be provided in the air traffic management. In predicting air transportation traffic and optimizing traffic flows systems, ARTIMATION will provide a proof-of-concept of transparent AI models that includes visualization, explanation, generalization with adaptability over time to ensure safe and reliable decision support.