Transforming applicability of density functional theory simulations
"Quantum-chemical simulations have become an integral part of chemistry research, enabling significant technological advances in predictions of new drugs, solar cells, catalysts, battery materials. The present project seeks to ove...
ver más
Descripción del proyecto
"Quantum-chemical simulations have become an integral part of chemistry research, enabling significant technological advances in predictions of new drugs, solar cells, catalysts, battery materials. The present project seeks to overcome a fundamental hurdle that precludes quantum-chemical simulations from having high accuracy across chemistry; that is the daunting problem of strong electronic correlations. Strong correlations play a crucial role in chemistry, as they dictate reactivity principles and define properties of transition-metal compounds (workhorses of catalysis) and technologically relevant materials.
Specifically, the present project seeks to translate the researcher's new framework for the development of the next-generation of density functional theory (DFT) methods into computer codes. This new framework is inspired by the exact theory of strong electronic correlations and fully departs from the mainstream strategy for the construction of DFT approximations (""Jacob’s ladder of DFT""). The DFT methods developed in this project will be used to simulate chemical systems that are beyond the reach of state-of-the-art DFT. These include bond dissociations, transition metal catalysts (e.g., novel catalysts used in the conversion of the carbon-dioxide into small alcohols), radical species, platonic hydrocarbon cages.
The researcher is a chemist that focuses on the development of quantum-chemical theories, and the host is a leader in leader in the development of electronic structure codes used in nanoscience, material science, and chemistry. In this project, the expertise of the researcher and of the host will be put together to transform the initial success of the researcher's framework into a fundamentally novel (conceptual and computational) approach that can accurately simulate a range of strongly correlated chemical systems and processes that are inaccessible to state-of-the-art quantum-chemical simulations."
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.