Innovating Works

TRUFLOW

Financiado
TRansfers at tiny scales in tUrbulent multiphase FLOW
The prediction of heat and mass transfer across fluctuating fluid interfaces is a considerable challenge. It is however not only an ubiquitous part of industrial processes, but also a critical component of the global climate syste... The prediction of heat and mass transfer across fluctuating fluid interfaces is a considerable challenge. It is however not only an ubiquitous part of industrial processes, but also a critical component of the global climate system through ocean-atmosphere interactions. Sustainable development and greenhouse gas emission containment will require an overhaul of already knowledge-intensive processes. TRUFLOW thus aims at enabling the quantitative prediction of the heat and mass transfer in fluid flow using simulation, high performance computation and multiphysics, multiscale methods. Using presently available, cutting edge interface tracking and subgrid scale methods TRUFLOW will investigate a range of critical processes, allowing for example industry to plan for improved carbon capture processes such as rotating packed beds, new processes such as hydrogen-based metallurgy to replace carbon based metallurgy, heat and mass transfer in hydrogen fuel cells, boiling and cavitation simulation and CO2 transfer across the wavy ocean surface. The key limiting factor in the success of simulation in this domain is the considerable range of scales expected, with slowly diffusing chemicals creating boundary layers that are orders of magnitude smaller than the typical fluid structures, bubbles or droplets. Critical heat fluxes in boiling and interface motion at the microscale are determined by contact line motion, which involves tiny molecular scales. TRUFLOW will bridge these various extreme length scale gaps using state of the art methods. It will result in direct high performance simulations of heat and mass transfer, coupled simulation and analysis of existing experimental data, an analysis of the performance of reduced models of flows with tiny scale transfers, and a systematic use of these models in industrial or natural configurations. ver más
31/05/2025
2M€
Duración del proyecto: 60 meses Fecha Inicio: 2020-05-27
Fecha Fin: 2025-05-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-05-27
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2019-ADG: ERC Advanced Grant
Cerrada hace 5 años
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
SORBONNE UNIVERSITE No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5