TRansfers at tiny scales in tUrbulent multiphase FLOW
The prediction of heat and mass transfer across fluctuating fluid interfaces is a considerable challenge. It is however not only an ubiquitous part of industrial processes, but also a critical component of the global climate syste...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
COMETE
Next Generation Computational Methods for Enhanced Multiphas...
753K€
Cerrado
ENE2011-28024
TERMOPIV2: PIV AVANZADO EN FLUJOS DE INTERES TERMICO
99K€
Cerrado
COPA-GT
Coupled Parallel Simulation of Gas Turbines
4M€
Cerrado
ENE2011-24574
MODELIZACION MULTIFISICA Y MULTIESCALA DE PROBLEMAS FLUIDOTE...
36K€
Cerrado
DPI2016-79401-R
TRANSFERENCIA DE CALOR POR CONVECCION Y ESTRUCTURAS COHERENT...
100K€
Cerrado
TRA2014-59483-R
MODELOS AVANZADOS DE COMBUSTION EN SPRAYS PARA PLANTAS PROPU...
111K€
Cerrado
Información proyecto TRUFLOW
Duración del proyecto: 60 meses
Fecha Inicio: 2020-05-27
Fecha Fin: 2025-05-31
Líder del proyecto
SORBONNE UNIVERSITE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The prediction of heat and mass transfer across fluctuating fluid interfaces is a considerable challenge. It is however not only an ubiquitous part of industrial processes, but also a critical component of the global climate system through ocean-atmosphere interactions. Sustainable development and greenhouse gas emission containment will require an overhaul of already knowledge-intensive processes. TRUFLOW thus aims at enabling the quantitative prediction of the heat and mass transfer in fluid flow using simulation, high performance computation and multiphysics, multiscale methods. Using presently available, cutting edge interface tracking and subgrid scale methods TRUFLOW will investigate a range of critical processes, allowing for example industry to plan for improved carbon capture processes such as rotating packed beds, new processes such as hydrogen-based metallurgy to replace carbon based metallurgy, heat and mass transfer in hydrogen fuel cells, boiling and cavitation simulation and CO2 transfer across the wavy ocean surface. The key limiting factor in the success of simulation in this domain is the considerable range of scales expected, with slowly diffusing chemicals creating boundary layers that are orders of magnitude smaller than the typical fluid structures, bubbles or droplets. Critical heat fluxes in boiling and interface motion at the microscale are determined by contact line motion, which involves tiny molecular scales. TRUFLOW will bridge these various extreme length scale gaps using state of the art methods. It will result in direct high performance simulations of heat and mass transfer, coupled simulation and analysis of existing experimental data, an analysis of the performance of reduced models of flows with tiny scale transfers, and a systematic use of these models in industrial or natural configurations.